Repository logo
 
Loading...
Project Logo
Research Project

Chemistry Research Unit of University of Porto

Authors

Publications

Electrochemistry-assisted surface plasmon resonance detection of miRNA-145 at femtomolar level
Publication . Ribeiro, José A.; Sales, Maria Goreti Ferreira; Pereira, Carlos M.
In this work, we combined electrochemical techniques with SPR (eSPR) for the label-free detection of cancer biomarker miRNA-145. Detection was performed in a simple two-step assay. In the first step, the gold sensor surface, previously functionalized with a self-assembled monolayer (SAM) of thiolated RNA probes is incubated with the sample containing the target RNA biomarker. In this step, hybridization of RNA fragments with complementary immobilized probes was monitored in real-time by SPR. In the second step, eSPR measurements were performed to improve the sensitivity of the hybridization assay. Potential-induced deposition of a redox probe at the sensor surface resulted in enhanced SPR response promoted by the electrochemical process, thereby allowing the detection of miRNA-145 at femtomolar level (LOD = 0.56 fM), without sample derivatization or post-hybridization treatment for signal amplification. Good linearity was achieved (R2 = 0.984) over the concentration range from 1.0 fM and 10 nM. Furthermore, the developed eSPR biosensor showed high selectivity towards single-base and two-base mismatch sequences and detection of target miRNA-145 in synthetic human serum was successful achieved.
In Vitro Evaluation of the Photoreactivity and Phototoxicity of Natural Polyphenol Antioxidants
Publication . Aguiar, Brandon; Carmo, Helena; Garrido, Jorge; Sousa Lobo, José M.; Almeida, Isabel F.
Polyphenols are a large family of natural compounds widely used in cosmetic products due to their antioxidant and anti-inflammatory beneficial properties and their ability to prevent UV radiation-induced oxidative stress. Since these compounds present chromophores and are applied directly to the skin, they can react with sunlight and exert phototoxic effects. The available scientific information on the phototoxic potential of these natural compounds is scarce, and thus the aim of this study was to evaluate the photoreactivity and phototoxicity of five phenolic antioxidants with documented use in cosmetic products. A standard ROS assay was validated and applied to screen the photoreactivity of the natural phenolic antioxidants caffeic acid, ferulic acid, p-coumaric acid, 3,4-dihydroxyphenylacetic acid (DOPAC), and rutin. The phototoxicity potential was determined by using a human keratinocyte cell line (HaCaT), based on the 3T3 Neutral Red Uptake phototoxicity test. Although all studied phenolic antioxidants absorbed UV/Vis radiation in the range of 290 to 700 nm, only DOPAC was able to generate singlet oxygen. The generation of reactive oxygen species is an early-stage chemical reaction as part of the phototoxicity mechanism. Yet, none of the studied compounds decreased the viability of keratinocytes after irradiation, leading to the conclusion that they do not have phototoxic potential. The data obtained with this work suggests that these compounds are safe when incorporated in cosmetic products.
Boosting caffeic acid performance as antioxidant and monoamine oxidase B/catechol-O-methyltransferase inhibitor
Publication . Chavarria, Daniel; Benfeito, Sofia; Soares, Pedro; Lima, Carla; Garrido, Jorge; Serrão, Paula; Soares-da-Silva, Patrício; Remião, Fernando; Oliveira, Paulo J.; Borges, Fernanda
Increased oxidative stress (OS) and depletion of nigrostriatal dopamine (DA) are closely linked to the neurodegeneration observed in Parkinson’s Disease (PD). Caffeic acid (CA)-based antioxidants were developed, and their inhibitory activities towards monoamine oxidases (MAOs) and catechol O-methyltransferases (COMT) were screened. The results showed that the incorporation of an extra double bond maintained or even boosted the antioxidant properties of CA. α-CN derivatives displayed redox potentials (Ep) similar to CA (1) and inhibited hMAO-B with low μM IC50 values. Moreover, catechol amides acted as MB-COMT inhibitors, showing IC50 values within the low μM range. In general, CA derivatives presented safe cytotoxicity profiles at concentrations up to 10 μM. The formation of reactive oxygen species (ROS) induced by CA derivatives may be underlying the cytotoxic effects observed at higher concentrations. Catechol amides 3–6, 8–11 at 10 μM protected cells against oxidative damage. Compounds 3 and 8 were predicted to cross the blood-brain barrier (BBB) by passive diffusion. In summary, we report for the first time BBB-permeant CA-based multitarget lead compounds that may restore DAergic neurotransmission (dual hMAO-B/MB-COMT inhibition) and prevent oxidative damage. The data represents a groundbreaking advancement towards the discovery of the next generation of new drugs for PD.
Design of an Emulgel for Psoriasis Focused on Patient Preferences
Publication . Oliveira, Rita Sanches; da Silva, Diva Ferraz; Mota, Sandra; Garrido, Jorge; Garrido, E. Manuela; Lobo, José Manuel Sousa; Almeida, Isabel Filipa
Adherence to topical treatments is low and is known to be influenced by the vehicle properties. Betamethasone dipropionate (BD) is an anti-inflammatory steroid, used in psoriasis treatment in the form of an ointment, cream, or solution. The aim of this work was to develop a new vehicle for BD, focusing on the preferences of patients with psoriasis as a strategy to improve treatment adherence. Two vehicles with an aqueous external phase were explored: an emulgel and a hydrogel based on a cyclodextrin inclusion complex used to improve the aqueous solubility of BD. Since BD solubilization was not fully achieved in the hydrogel, only the emulgel was selected for further characterization. This new vehicle (emulgel) is characterized by its white, shiny appearance and good spreading properties. In comparison with petrolatum, a lower residue, higher evaporation rate, lower stickiness, and reduced ability to stain polyester fabric were observed. This vehicle also showed shear thinning behavior. The impact of this new vehicle on adherence to topical treatments should be further confirmed in clinical settings.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

6817 - DCRRNI ID

Funding Award Number

UIDB/00081/2020

ID