Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 2 of 2
  • Boosting caffeic acid performance as antioxidant and monoamine oxidase B/catechol-O-methyltransferase inhibitor
    Publication . Chavarria, Daniel; Benfeito, Sofia; Soares, Pedro; Lima, Carla; Garrido, Jorge; Serrão, Paula; Soares-da-Silva, Patrício; Remião, Fernando; Oliveira, Paulo J.; Borges, Fernanda
    Increased oxidative stress (OS) and depletion of nigrostriatal dopamine (DA) are closely linked to the neurodegeneration observed in Parkinson’s Disease (PD). Caffeic acid (CA)-based antioxidants were developed, and their inhibitory activities towards monoamine oxidases (MAOs) and catechol O-methyltransferases (COMT) were screened. The results showed that the incorporation of an extra double bond maintained or even boosted the antioxidant properties of CA. α-CN derivatives displayed redox potentials (Ep) similar to CA (1) and inhibited hMAO-B with low μM IC50 values. Moreover, catechol amides acted as MB-COMT inhibitors, showing IC50 values within the low μM range. In general, CA derivatives presented safe cytotoxicity profiles at concentrations up to 10 μM. The formation of reactive oxygen species (ROS) induced by CA derivatives may be underlying the cytotoxic effects observed at higher concentrations. Catechol amides 3–6, 8–11 at 10 μM protected cells against oxidative damage. Compounds 3 and 8 were predicted to cross the blood-brain barrier (BBB) by passive diffusion. In summary, we report for the first time BBB-permeant CA-based multitarget lead compounds that may restore DAergic neurotransmission (dual hMAO-B/MB-COMT inhibition) and prevent oxidative damage. The data represents a groundbreaking advancement towards the discovery of the next generation of new drugs for PD.
  • Hydroxycinnamic acid antioxidants: an electrochemical overview
    Publication . Teixeira, José; Gaspar, Alexandra; Garrido, E. Manuela; Garrido, Jorge; Borges, Fernanda
    Hydroxycinnamic acids (such as ferulic, caffeic, sinapic, and p-coumaric acids) are a group of compounds highly abundant in food that may account for about one-third of the phenolic compounds in our diet. Hydroxycinnamic acids have gained an increasing interest in health because they are known to be potent antioxidants. These compounds have been described as chain-breaking antioxidants acting through radical scavenging activity, that is related to their hydrogen or electron donating capacity and to the ability to delocalize/stabilize the resulting phenoxyl radical within their structure.The free radical scavenger ability of antioxidants can be predicted from standard one-electron potentials. Thus, voltammetric methods have often been applied to characterize a diversity of natural and synthetic antioxidants essentially to get an insight into their mechanism and also as an important tool for the rational design of new and potent antioxidants.The structure-property-activity relationships (SPARs) correlations already established for this type of compounds suggest that redox potentials could be considered a good measure of antioxidant activity and an accurate guideline on the drug discovery and development process. Due to its magnitude in the antioxidant field, the electrochemistry of hydroxycinnamic acid-based antioxidants is reviewed highlighting the structure-property-activity relationships (SPARs) obtained so far.