Loading...
4 results
Search Results
Now showing 1 - 4 of 4
- Reserve costs allocation model for energy and reserve market simulationPublication . Pinto, Tiago; Gazafroudi, Amin Shokri; Prieto-Castrillo, Francisco; Santos, Gabriel; Silva, Francisco; Corchado, Juan Manuel; Vale, ZitaThis paper proposes a new model to allocate reserve costs among the involved players, considering the characteristics of the several entities, and the particular circumstances at each moment. The proposed model is integrated in the Multi-Agent Simulator of Competitive Electricity Markets (MASCEM), which enables complementing the multi-agent simulation of diverse electricity market models, by including the joint simulation of energy and reserve markets. In this context, the proposed model allows allocating the payment of reserve costs that result from the reserve market. A simulation based on real data from the Iberian electricity market - MIBEL, is presented. Simulation results show the advantages of the proposed model in sharing the reserve costs fairly and accordingly to the different circumstances. This work thus contributes the study of novel market models towards the evolution of power and energy systems by adapting current models to the new paradigm of high penetration of renewable energy generation.
- Decision Support System for the Negotiation of Bilateral Contracts in Electricity MarketsPublication . Silva, Francisco; Teixeira, Brígida; Pinto, Tiago; Praça, Isabel; Marreiros, Goreti; Vale, ZitaThe use of Decision Support Systems (DSS) in the eld of Electricity Markets (EM) is essential to provide strategic support to its players. EM are constantly changing, dynamic environments, with many entities which give them a particularly complex nature. There are several simulators for this purpose, including Bilateral Contracting. However, a gap is noticeable in the pre-negotiation phase of energy transactions, particularly in gathering information on opposing negotiators. This paper presents an overview of existing tools for decision support to the Bilateral Contracting in EM, and proposes a new tool that addresses the identied gap, using concepts related to automated negotiation, game theory and data mining.
- Bilateral contract prices estimation using a Q-learning based approachPublication . Rodriguez-Fernandez, Jaime; Pinto, Tiago; Silva, Francisco; Praça, Isabel; Vale, Zita; Corchado, Juan ManuelThe electricity markets restructuring process encouraged the use of computational tools in order to allow the study of different market mechanisms and the relationships between the participating entities. Automated negotiation plays a crucial role in the decision support for energy transactions due to the constant need for players to engage in bilateral negotiations. This paper proposes a methodology to estimate bilateral contract prices, which is essential to support market players in their decisions, enabling adequate risk management of the negotiation process. The proposed approach uses an adaptation of the Q-Learning reinforcement learning algorithm to choose the best from a set of possible contract prices forecasts that are determined using several methods, such as artificial neural networks (ANN), support vector machines (SVM), among others. The learning process assesses the probability of success of each forecasting method, by comparing the expected negotiation price with the historic data contracts of competitor players. The negotiation scenario identified as the most probable scenario that the player will face during the negotiation process is the one that presents the higher expected utility value. This approach allows the supported player to be prepared for the negotiation scenario that is the most likely to represent a reliable approximation of the actual negotiation environment.
- Energy consumption forecasting using genetic fuzzy rule-based systems based on MOGUL learning methodologyPublication . Jozi, Aria; Pinto, Tiago; Praça, Isabel; Silva, Francisco; Teixeira, Brígida; Vale, ZitaOne of the most challenging tasks for energy domain stakeholders is to have a better preview of the electricity consumption. Having a more trustable expectation of electricity consumption can help minimizing the cost of electricity and also enable a better control on the electricity tariff. This paper presents a study using a Methodology to Obtain Genetic fuzzy rule-based systems Under the iterative rule Learning approach (MOGUL) methodology in order to have a better profile of the electricity consumption of the following hours. The proposed approach uses the electricity consumption of the past hours to forecast the consumption value for the following hours. Results from this study are compared to those of previous approaches, namely two fuzzy based systems: and several different approaches based on artificial neural networks. The comparison of the achieved results with those achieved by the previous approaches shows that this approach can calculate a more reliable value for the electricity consumption in the following hours, as it is able to achieve lower forecasting errors, and a less standard deviation of the forecasting error results