Repository logo
 

Search Results

Now showing 1 - 3 of 3
  • Electrochemical sensing of the thyroid hormone thyronamine (T0AM) via molecular imprinted polymers (MIPs)
    Publication . Pacheco, João; Rebelo, Patrícia; Cagide, Fernando; Gonçalves, Luís Moreira; Borges, Fernanda; Rodrigues, José António; Delerue-Matos, Cristina
    Recent studies have shown that besides the well-known T3 (triiodothyronine) and T4 (thyroxine) there might be other important thyroid hormones, in particular T0AM (thyronamine) and T1AM (3-iodothyronamine). The absence of a large number of studies showing their precise importance might be explained by the limited number of analytical methodologies available. This work aims to show an electroanalytical alternative making use of electropolymerized molecularly imprinted polymer (MIPs). The MIPs' polymerization is performed on the surface of screen-printed carbon electrodes (SPCEs), using 4-aminobenzoic acid (4-ABA) as the building and functional monomer and the analyte T0AM as the template. The step-by-step construction of the SPCE-MIP sensor was studied by cyclic voltammetry (CV) and by electrochemical impedance spectroscopy (EIS). After optimization, by means of square-wave voltammetry, the SPCE-MIP showed suitable selectivity (in comparison with other thyroid hormones and catechol amines), repeatability (intra-day of 3.9%), a linear range up to 10 μmol L-1 (0.23 × 103 μg dL-1) with an r2 of 0.998 and a limit of detection (LOD) and quantification (LOQ) of 0.081 and 0.27 μmol L-1 (1.9 and 6.2 μg dL-1), respectively.
  • Breast cancer biomarker (HER2-ECD) detection using a molecularly imprinted electrochemical sensor
    Publication . Pacheco, João; Rebelo, Patrícia; Freitas, Maria; Nouws, Henri; Delerue-Matos, Cristina
    The extracellular domain of the human epidermal growth factor receptor 2 (HER2-ECD) is a protein breast cancer biomarker. Its quantification in peripheral blood could provide an important contribution to diagnostics and patient follow-up. In this work an electrochemical molecularly imprinted polymer (MIP) sensor for the quantification of HER2-ECD was developed. The MIP was electropolymerized by cyclic voltammetry using a solution containing phenol and HER2-ECD on a screen-printed gold electrode (AuSPE). The sensor was characterized by cyclic voltammetry and electrochemical impedance spectroscopy. The analysis of HER2-ECD was performed by differential pulse voltammetry using ([Fe(CN)6]3−/4−as redox probe. The linear range was established in the concentration interval from 10 to 70 ng/mL HER2-ECD, with a limit of detection of 1.6 ng/L and a limit of quantification of 5.2 ng/mL. Through the analysis of other protein biomarkers, the MIP sensor was found to be selective. Furthermore, these proteins did not interfere in the analysis of the selected biomarker. The developed sensor was used for the analysis of spiked human serum samples, providing adequate recovery values and precise results. The outcomes of this study indicate that the developed MIP sensor could be useful in the non-invasive analysis of HER2-ECD in breast cancer patients.
  • Molecularly imprinted electrochemical sensor prepared on a screen printed carbon electrode for naloxone detection
    Publication . Lopes, Frederico; Pacheco, João; Rebelo, Patrícia; Delerue-Matos, Cristina
    Naloxone (NLX) is a pharmaceutical used as opioid antagonist. A molecular imprinted polymer electrochemical sensor for simple and rapid detection of NLX was prepared through the modification of commercial available screen printed carbon electrode (SPCE). The SPCE was modified with multi-walled carbon nanotubes (MWCNT) by drop coating to increase the signal response and improve the sensitivity. The MIP preparation was carried out via in situ electropolymerization using 4-aminobenzoic acid (4-ABA) as functional monomer. The morphology of the obtained sensor was characterized by scanning electron microscopy (SEM). Several parameters controlling the preparation and performance of the MIP sensor were studied and optimized. The electrochemical behavior of NLX at MIP and control non-imprinted (NIP) sensor was evaluated by differential pulse voltammetry (DPV), demonstrating a better MIP response and the success of the imprinting. The proposed MIP/MWCNT/SPCE sensor showed a linear relationship between peak current intensity and NLX concentration in the range between 0.25 and 10.0 μM, with limits of detection (LOD) and quantification (LOQ) of 0.20 μM and 0.67 μM respectively. The repeatability and reproducibility were also tested with relative standard deviations (RSD) of 4.6 and 9.6% respectively. Moreover, the applicability of the method was successfully confirmed with detection of NLX in biological samples (urine and human serum). The sensor is promising to be used for screening NLX in point-of-care people with opioid overdose.