Repository logo
 

Search Results

Now showing 1 - 2 of 2
  • A Drone Secure Handover Architecture validated in a Software in the Loop Environment
    Publication . Vasconcelos Filho, Ênio; Gomes, Filipe; Monteiro, Stéphane; Penna, Sergio; Koubaa, Anis; Tovar, Eduardo; Severino, Ricardo
    The flight and control capabilities of uncrewed aerial vehicles (UAVs) have increased significantly with recent research for civilian and commercial applications. As a result, these devices are becoming capable of flying ever greater distances, accomplishing flights beyond line of sight (BVLOS). However, given the need for safety guarantees, these flights are increasingly subject to regulations. Handover operations between controllers and the security of the exchanged data are a challenge for implementing these devices in various applications. This paper presents a secure handover architecture between control stations, using a Software in the Loop (SIL) model to validate the adopted strategies and mitigate the time between simulation and real systems implementations. This architecture is developed in two separate modules that perform the security and handover processes. Finally, we validate the proposed architecture with several drone flights on a virtual testbed.
  • A WSSL Implementation for Critical Cyber-Physical Systems Applications
    Publication . Rocha, Márcia; Vasconcelos Filho, Ênio; Alves, Fernando; Penna, Sergio; Santos, Pedro Miguel; Tovar, Eduardo
    The advancements in wireless communication technologies have enabled unprecedented pervasiveness and ubiquity of Cyber-Physical Systems (CPS). Such technologies can now empower true Systemsof-Systems, which cooperate to achieve more complex and efficient functionalities. However, for CPS applications to become a reality, safety and security must be guaranteed, particularly in critical systems, since they rely on open communication systems prone to intentional and non-intentional interferences. We propose designing a Wireless Safety and Security Layer (WSSL) architecture to be implemented in critical CPS applications to address these issues. WSSL increases the reliability of these critical communications by enabling the detection of communication errors. Furthermore, it increases the CPS security using a message signature process that uniquely identifies the sender. So, we present the WSSL architecture and its implementation over an MQTT protocol. We prove that WSSL does not significantly increase the system transmission costs and demonstrate its capability to ensure safety and security, allowing it to be used in any general or critical CPS.