Repository logo
 

Search Results

Now showing 1 - 4 of 4
  • Rehabilitation outcomes and parameters of blood flow restriction training in ACL injury: a scoping review
    Publication . Caetano, Daniel; Oliveira, Catarina; Correia, Cristiana; Barbosa, Pedro; Mesquita Montes, António; Carvalho, Paulo
    To identify the outcomes of physical function, physical fitness, training, and cuff parameters, used in BFRT in ACL rehabilitation. This scoping review was initiated on April 25th, 2020, according to the PRISMA Extension for Scoping Reviews (PRISMA-ScR). Relevant literature was identified searching three main concepts: BFRT, rehabilitation and ACL injury on MEDLINE (PubMed), CENTRAL of Cochrane Library, Web of Science and PEDro. Studies looking at adults with a primary ACL injury undergoing conservative or pre/post-surgery rehabilitation with BFR or BFRT, with physical fitness and physical function as outcomes or other physical outcomes were included. Sixty-eight articles were identified and six were included. One article was added through backward tracking. All studies used BFRT in the ACL injury surgical rehabilitation. Most studies evaluated physical fitness (muscular strength and volume) however, physical function was not considered a pri mary outcome. Training and cuff parameters were heterogeneously prescribed. The existing evidence is not enough to draw definitive conclusions due to the heterogenous reported outcomes and parameters. Future investigation with standardized outcome measures and specific protocols are needed to draw conclusions on patients’ physical function, so BFRT can be used more effectively in clinical rehabilitation practice.
  • The influence of upper limb lever in muscle activity of scapular stabilizers in push-up position on the wall
    Publication . Carvalho, Paulo; Mesquita Montes, António; Crasto, Carlos; Barbosa, Pedro; Peres, Patrícia
    The push-up has been extensively studied regarding scapular stabilizers. However, certain variations of push-up position still need further study. To analyze the influence of different levers of the upper limb - hands and forearms support - in muscle activity of scapular stabilizers in push-up position on the wall, as well as to analyze the electromyographic differences between protraction and retraction phases of the scapulas.
  • Diagnostic ultrasound assessment of deep fascia sliding mobility in vivo: A scoping review – Part 1: Thoracolumbar and abdominal fasciae
    Publication . Soares, Hélio Rafael; Pinheiro, Ana Rita; Crasto, Carlos; Barbosa, Pedro; Dias, Nuno; Carvalho, Paulo de
    Failure of fascial sliding may occur in cases of excessive or inappropriate use, trauma, or surgery, resulting in local inflammation, pain, sensitization, and potential dysfunction. Therefore, the mechanical properties of fascial tissues, including their mobility, have been evaluated in vivo by ultra-sound (US) imaging. However, this seems to be a method that is not yet properly standardized nor validated. To identify, synthesize, and collate the critical methodological principles that have been described in the literature for US evaluation of deep fascia sliding mobility in vivo in humans. Methods: A systematic literature search was conducted on ScienceDirect, PubMed (Medline), Web of Science and B-On databases, according to the PRISMA Extension for Scoping Reviews (PRISMA-ScR) guidelines. The OCEBM LoE was used to evaluate the level of evidence of each study. From a total of 104 full-text articles retrieved and assessed for eligibility, 18 papers were included that evaluate the deep fasciae of the thoracolumbar (n ¼ 4), abdominal (n ¼ 7), femoral (n ¼ 4) and crural (n ¼ 3) regions. These studies addressed issues concerning either diagnosis (n ¼ 11) or treatment benefits (n ¼ 7) and presented levels of evidence ranging from II to IV. Various terms were used to describe the outcome measures representing fascial sliding. Also, different procedures to induce fascial sliding, positioning of the individuals being assessed, and features of US devices were used. The US analysis methods included the comparison of start and end frames and the use of cross-correlation software techniques through automated tracking algorithms. These methods had proven to be reliable to measure sliding between TLF, TrA muscle-fascia junctions, fascia lata, and crural fascia, and the adjacent epimysial fascia. However, the papers presented heterogeneous terminologies, research questions, populations, and methodologies. This two-part paper reviews the evidence obtained for the thoracolumbar and abdominal fasciae (Part 1) and for the femoral and crural fasciae (Part 2). The US methods used to evaluate deep fascia sliding mobility in vivo in humans include the comparison of start and end frames and the use of cross-correlation software techniques through automated tracking algorithms. These seem reliable methods to measure sliding of some fasciae, but more studies need to be systematized to confirm their reliability for others. Moreover, specific standardized protocols are needed to assess each anatomical region as well as study if age, sex-related characteristics, body composition, or specific clinical conditions influence US results.
  • Diagnostic ultrasound assessment of deep fascia sliding mobility in vivo: A scoping review – Part 2: Femoral and crural fasciae
    Publication . Soares, Hélio Rafael; Pinheiro, Ana Rita; Crasto, Carlos; Barbosa, Pedro; Dias, Nuno; Carvalho, Paulo
    Failure of fascial sliding may occur in cases of excessive or inappropriate use, trauma, or surgery, resulting in local inflammation, pain, sensitization, and potential dysfunction. Therefore, the mechanical properties of fascial tissues, including their mobility, have been evaluated in vivo by ultrasound (US) imaging. However, this seems to be a method that is not yet properly standardized nor validated. To identify, synthesize, and collate the critical methodological principles that have been described in the literature for US evaluation of deep fascia sliding mobility in vivo in humans. A systematic literature search was conducted on ScienceDirect, PubMed (Medline), Web of Science and B-On databases, according to the PRISMA Extension for Scoping Reviews (PRISMA-ScR) guidelines. The OCEBM LoE was used to evaluate the level of evidence of each study. ́ From a total of 104 full-text articles retrieved and assessed for eligibility, 18 papers were included that evaluate the deep fasciae of the thoracolumbar (n ¼ 4), abdominal (n ¼ 7), femoral (n ¼ 4) and crural (n ¼ 3) regions. These studies addressed issues concerning either diagnosis (n ¼ 11) or treatment benefits (n ¼ 7) and presented levels of evidence ranging from II to IV. Various terms were used to describe the outcome measures representing fascial sliding. Also, different procedures to induce fascial sliding, positioning of the individuals being assessed, and features of US devices were used. The US analysis methods included the comparison of start and end frames and the use of cross-correlation software techniques through automated tracking algorithms. These methods had proven to be reliable to measure sliding between TLF, TrA muscle-fascia junctions, fascia lata, and crural fascia, and the adjacent epimysial fascia. However, the papers presented heterogeneous terminologies, research questions, populations, and methodologies. This two-part paper reviews the evidence obtained for the thoracolumbar and abdominal fasciae (Part 1) and for the femoral and crural fasciae (Part 2). The US methods used to evaluate deep fascia sliding mobility in vivo in humans include the comparison of start and end frames and the use of cross-correlation software techniques through automated tracking algorithms. These seem reliable methods to measure sliding of some fasciae, but more studies need to be systematized to confirm their reliability for others. Moreover, specific standardized protocols are needed to assess each anatomical region as well as study if age, sex-related characteristics, body composition, or specific clinical conditions influence US results.