Loading...
4 results
Search Results
Now showing 1 - 4 of 4
- Investigating theaccuracy of autoregressive recurrent networks using hierarchical aggregation structure-based data partitioningPublication . Oliveira, José Manuel; Ramos, PatríciaGlobal models have been developed to tackle the challenge of forecasting sets of series that are related or share similarities, but they have not been developed for heterogeneous datasets. Various methods of partitioning by relatedness have been introduced to enhance the similarities of sets, resulting in improved forecasting accuracy but often at the cost of a reduced sample size, which could be harmful. To shed light on how the relatedness between series impacts the effectiveness of global models in real-world demand-forecasting problems, we perform an extensive empirical study using the M5 competition dataset. We examine cross-learning scenarios driven by the product hierarchy commonly employed in retail planning to allow global models to capture interdependencies across products and regions more effectively. Our findings show that global models outperform state-of-the-art local benchmarks by a considerable margin, indicating that they are not inherently more limited than local models and can handle unrelated time-series data effectively. The accuracy of data-partitioning approaches increases as the sizes of the data pools and the models’ complexity decrease. However, there is a trade-off between data availability and data relatedness. Smaller data pools lead to increased similarity among time series, making it easier to capture cross-product and cross-region dependencies, but this comes at the cost of a reduced sample, which may not be beneficial. Finally, it is worth noting that the successful implementation of global models for heterogeneous datasets can significantly impact forecasting practice.
- A procedure for identification of appropriate state space and ARIMA models based on time-series cross-validationPublication . Ramos, Patricia; Oliveira, José ManuelIn this work, a cross-validation procedure is used to identify an appropriate Autoregressive Integrated Moving Average model and an appropriate state space model for a time series. A minimum size for the training set is specified. The procedure is based on one-step forecasts and uses different training sets, each containing one more observation than the previous one. All possible state space models and all ARIMA models where the orders are allowed to range reasonably are fitted considering raw data and log-transformed data with regular differencing (up to second order differences) and, if the time series is seasonal, seasonal differencing (up to first order differences). The value of root mean squared error for each model is calculated averaging the one-step forecasts obtained. The model which has the lowest root mean squared error value and passes the Ljung–Box test using all of the available data with a reasonable significance level is selected among all the ARIMA and state space models considered. The procedure is exemplified in this paper with a case study of retail sales of different categories of women’s footwear from a Portuguese retailer, and its accuracy is compared with three reliable forecasting approaches. The results show that our procedure consistently forecasts more accurately than the other approaches and the improvements in the accuracy are significant.
- Forecasting Seasonal Sales with Many Drivers: Shrinkage or Dimensionality Reduction?Publication . Ramos, Patricia; Oliveira, José Manuel; Kourentzes, Nikolaos; Fildes, RobertRetailers depend on accurate forecasts of product sales at the Store SKU level to efficiently manage their inventory. Consequently, there has been increasing interest in identifying more advanced statistical techniques that lead to accuracy improvements. However, the inclusion of multiple drivers affecting demand into commonly used ARIMA and ETS models is not straightforward, particularly when many explanatory variables are available. Moreover, regularization regression models that shrink the model’s parameters allow for the inclusion of a lot of relevant information but do not intrinsically handle the dynamics of the demand. These problems have not been addressed by previous studies. Nevertheless, multiple simultaneous effects interacting are common in retailing. To be successful, any approach needs to be automatic, robust and efficiently scaleable. In this study, we design novel approaches to forecast retailer product sales taking into account the main drivers which affect SKU demand at store level. To address the variable selection challenge, the use of dimensionality reduction via principal components analysis (PCA) and shrinkage estimators was investigated. The empirical results, using a case study of supermarket sales in Portugal, show that both PCA and shrinkage are useful and result in gains in forecast accuracy in the order of 10% over benchmarks while offering insights on the impact of promotions. Focusing on the promotional periods, PCA-based models perform strongly, while shrinkage estimators over-shrink. For the non-promotional periods, shrinkage estimators significantly outperform the alternatives.
- Robust sales forecasting using deep learning with static and dynamic covariatesPublication . Ramos, Patrícia; Oliveira, José Manuel: Retailers must have accurate sales forecasts to efficiently and effectively operate their businesses and remain competitive in the marketplace. Global forecasting models like RNNs can be a powerful tool for forecasting in retail settings, where multiple time series are often interrelated and influenced by a variety of external factors. By including covariates in a forecasting model, we can often better capture the various factors that can influence sales in a retail setting. This can help improve the accuracy of our forecasts and enable better decision making for inventory management, purchasing, and other operational decisions. In this study, we investigate how the accuracy of global forecasting models is affected by the inclusion of different potential demand covariates. To ensure the significance of the study’s findings, we used the M5 forecasting competition’s openly accessible and well-established dataset. The results obtained from DeepAR models trained on different combinations of features indicate that the inclusion of time-, event-, and ID-related features consistently enhances the forecast accuracy. The optimal performance is attained when all these covariates are employed together, leading to a 1.8% improvement in RMSSE and a 6.5% improvement in MASE compared to the baseline model without features. It is noteworthy that all DeepAR models, both with and without covariates, exhibit a significantly superior forecasting performance in comparison to the seasonal naïve benchmark.