Repository logo
 

Search Results

Now showing 1 - 9 of 9
  • SoK: Realistic Adversarial Attacks and Defenses for Intelligent Network Intrusion Detection
    Publication . Vitorino, João; Praça, Isabel; Maia, Eva
    Machine Learning (ML) can be incredibly valuable to automate anomaly detection and cyber-attack classification, improving the way that Network Intrusion Detection (NID) is performed. However, despite the benefits of ML models, they are highly susceptible to adversarial cyber-attack examples specifically crafted to exploit them. A wide range of adversarial attacks have been created and researchers have worked on various defense strategies to safeguard ML models, but most were not intended for the specific constraints of a communication network and its communication protocols, so they may lead to unrealistic examples in the NID domain. This Systematization of Knowledge (SoK) consolidates and summarizes the state-of-the-art adversarial learning approaches that can generate realistic examples and could be used in real ML development and deployment scenarios with real network traffic flows. This SoK also describes the open challenges regarding the use of adversarial ML in the NID domain, defines the fundamental properties that are required for an adversarial example to be realistic, and provides guidelines for researchers to ensure that their future experiments are adequate for a real communication network.
  • Adversarial Robustness and Feature Impact Analysis for Driver Drowsiness Detection
    Publication . Vitorino, João; Rodrigues, Lourenço; Maia, Eva; Praça, Isabel; Lourenço, André
    Drowsy driving is a major cause of road accidents, but drivers are dismissive of the impact that fatigue can have on their reaction times. To detect drowsiness before any impairment occurs, a promising strategy is using Machine Learning (ML) to monitor Heart Rate Variability (HRV) signals. This work presents multiple experiments with different HRV time windows and ML models, a feature impact analysis using Shapley Additive Explanations (SHAP), and an adversarial robustness analysis to assess their reliability when processing faulty input data and perturbed HRV signals. The most reliable model was Extreme Gradient Boosting (XGB) and the optimal time window had between 120 and 150 s. Furthermore, the 18 most impactful features were selected and new smaller models were trained, achieving a performance as good as the initial ones. Despite the susceptibility of all models to adversarial attacks, adversarial training enabled them to preserve significantly higher results, so it can be a valuable approach to provide a more robust driver drowsiness detection.
  • Constrained Adversarial Learning and its applicability to Automated Software Testing: a systematic review
    Publication . Vitorino, João; Dias, Tiago; Fonseca, Tiago; Maia, Eva; Praça, Isabel
    Every novel technology adds hidden vulnerabilities ready to be exploited by a growing number of cyber-attacks. Automated software testing can be a promising solution to quickly analyze thousands of lines of code by generating and slightly modifying function-specific testing data to encounter a multitude of vulnerabilities and attack vectors. This process draws similarities to the constrained adversarial examples generated by adversarial learning methods, so there could be significant benefits to the integration of these methods in automated testing tools. Therefore, this systematic review is focused on the current state-of-the-art of constrained data generation methods applied for adversarial learning and software testing, aiming to guide researchers and developers to enhance testing tools with adversarial learning methods and improve the resilience and robustness of their digital systems. The found constrained data generation applications for adversarial machine learning were systematized, and the advantages and limitations of approaches specific for software testing were thoroughly analyzed, identifying research gaps and opportunities to improve testing tools with adversarial attack methods.
  • A Comparative Analysis of Machine Learning Techniques for IoT Intrusion Detection
    Publication . Vitorino, João; Andrade, Rui; Praça, Isabel; Sousa, Orlando Jorge Coelho Moura; Maia, Eva
    The digital transformation faces tremendous security challenges. In particular, the growing number of cyber-attacks targeting Internet of Things (IoT) systems restates the need for a reliable detection of malicious network activity. This paper presents a comparative analysis of supervised, unsupervised and reinforcement learning techniques on nine malware captures of the IoT-23 dataset, considering both binary and multi-class classification scenarios. The developed models consisted of Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), Isolation Forest (iForest), Local Outlier Factor (LOF) and a Deep Reinforcement Learning (DRL) model based on a Double Deep Q-Network (DDQIN), adapted to the intrusion detection context. The most reliable performance was achieved by LightGBM. Nonetheless, iForest displayed good anomaly detection results and the DRL model demonstrated the possible benefits of employing this methodology to continuously improve the detection. Overall, the obtained results indicate that the analyzed techniques are well suited for IoT intrusion detection.
  • LEMMAS: a secured and trusted Local Energy Market simulation system
    Publication . Andrade, Rui; Vitorino, João; Wannous, Sinan; Maia, Eva; Praça, Isabel
    The ever changing nature of the energy grid and the addition of novel systems such as the Local Energy Market (LEM) drastically increase its complexity, thus making the management harder and with increased importance at local level. Providing innovative and advanced management solutions is fundamental for the success of this new distributed energy grid paradigm. In this paper we extend Multi-Agent System (MAS) based simulation tool for LEMs called LEMMAS. A cyberattack detection model is developed and integrated in LEMMAS with the objective of preventing cyber-attacks from affecting the negotiations. This model is compared with the previous version which only analysed the trustworthiness of participants. The results show that the cyber-attack detection model drastically increases the security capabilities of LEMMAS.
  • A New Concept of Digital Twin Supporting Optimization and Resilience of Factories of the Future
    Publication . Bécue, Adrien; Maia, Eva; Feeken, Linda; Borchers, Philipp; Praça, Isabel
    In the context of Industry 4.0, a growing use is being made of simulation-based decision-support tools commonly named Digital Twins. Digital Twins are replicas of the physical manufacturing assets, providing means for the monitoring and control of individual assets. Although extensive research on Digital Twins and their applications has been carried out, the majority of existing approaches are asset specific. Little consideration is made of human factors and interdependencies between different production assets are commonly ignored. In this paper, we address those limitations and propose innovations for cognitive modeling and co-simulation which may unleash novel uses of Digital Twins in Factories of the Future. We introduce a holistic Digital Twin approach, in which the factory is not represented by a set of separated Digital Twins but by a comprehensive modeling and simulation capacity embracing the full manufacturing process including external network dependencies. Furthermore, we introduce novel approaches for integrating models of human behavior and capacities for security testing with Digital Twins and show how the holistic Digital Twin can enable new services for the optimization and resilience of Factories of the Future. To illustrate this approach, we introduce a specific use-case implemented in field of Aerospace System Manufacturing.
  • Towards Adversarial Realism and Robust Learning for IoT Intrusion Detection and Classification
    Publication . Vitorino, João; Praça, Isabel; Maia, Eva
    The internet of things (IoT) faces tremendous security challenges. Machine learning models can be used to tackle the growing number of cyber-attack variations targeting IoT systems, but the increasing threat posed by adversarial attacks restates the need for reliable defense strategies. This work describes the types of constraints required for a realistic adversarial cyber-attack example and proposes a methodology for a trustworthy adversarial robustness analysis with a realistic adversarial evasion attack vector. The proposed methodology was used to evaluate three supervised algorithms, random forest (RF), extreme gradient boosting (XGB), and light gradient boosting machine (LGBM), and one unsupervised algorithm, isolation forest (IFOR). Constrained adversarial examples were generated with the adaptative perturbation pattern method (A2PM), and evasion attacks were performed against models created with regular and adversarial training. Even though RF was the least affected in binary classification, XGB consistently achieved the highest accuracy in multi-class classification. The obtained results evidence the inherent susceptibility of tree-based algorithms and ensembles to adversarial evasion attacks and demonstrate the benefits of adversarial training and a security-by-design approach for a more robust IoT network intrusion detection and cyber-attack classification.
  • Holistic Security and Safety for Factories of the Future
    Publication . Maia, Eva; Wannous, Sinan; Dias, Tiago; Praça, Isabel; Faria, Ana
    The accelerating transition of traditional industrial processes towards fully automated and intelligent manufacturing is being witnessed in almost all segments. This major adoption of enhanced technology and digitization processes has been originally embraced by the Factories of the Future and Industry 4.0 initiatives. The overall aim is to create smarter, more sustainable, and more resilient future-oriented factories. Unsurprisingly, introducing new production paradigms based on technologies such as machine learning (ML), the Internet of Things (IoT), and robotics does not come at no cost as each newly incorporated technique poses various safety and security challenges. Similarly, the integration required between these techniques to establish a unified and fully interconnected environment contributes to additional threats and risks in the Factories of the Future. Accumulating and analyzing seemingly unrelated activities, occurring simultaneously in different parts of the factory, is essential to establish cyber situational awareness of the investigated environment. Our work contributes to these efforts, in essence by envisioning and implementing the SMS-DT, an integrated platform to simulate and monitor industrial conditions in a digital twin-based architecture. SMS-DT is represented in a three-tier architecture comprising the involved data and control flows: edge, platform, and enterprise tiers. The goal of our platform is to capture, analyze, and correlate a wide range of events being tracked by sensors and systems in various domains of the factory. For this aim, multiple components have been developed on the basis of artificial intelligence to simulate dominant aspects in industries, including network analysis, energy optimization, and worker behavior. A data lake was also used to store collected information, and a set of intelligent services was delivered on the basis of innovative analysis and learning approaches. Finally, the platform was tested in a textile industry environment and integrated with its ERP system. Two misuse cases were simulated to track the factory machines, systems, and people and to assess the role of SMS-DT correlation mechanisms in preventing intentional and unintentional actions. The results of these misuse case simulations showed how the SMS-DT platform can intervene in two domains in the first scenario and three in the second one, resulting in correlating the alerts and reporting them to security operators in the multi-domain intelligent correlation dashboard.
  • SMS-I: Intelligent Security for Cyber–Physical Systems
    Publication . Maia, Eva; Sousa, Norberto; Oliveira, Nuno; Wannous, Sinan; Sousa, Orlando; Praça, Isabel
    Critical infrastructures are an attractive target for attackers, mainly due to the catastrophic impact of these attacks on society. In addition, the cyber–physical nature of these infrastructures makes them more vulnerable to cyber–physical threats and makes the detection, investigation, and remediation of security attacks more difficult. Therefore, improving cyber–physical correlations, forensics investigations, and Incident response tasks is of paramount importance. This work describes the SMS-I tool that allows the improvement of these security aspects in critical infrastructures. Data from heterogeneous systems, over different time frames, are received and correlated. Both physical and logical security are unified and additional security details are analysed to find attack evidence. Different Artificial Intelligence (AI) methodologies are used to process and analyse the multi-dimensional data exploring the temporal correlation between cyber and physical Alerts and going beyond traditional techniques to detect unusual Events, and then find evidence of attacks. SMS-I’s Intelligent Dashboard supports decision makers in a deep analysis of how the breaches and the assets were explored and compromised. It assists and facilitates the security analysts using graphical dashboards and Alert classification suggestions. Therefore, they can more easily identify anomalous situations that can be related to possible Incident occurrences. Users can also explore information, with different levels of detail, including logical information and technical specifications. SMS-I also integrates with a scalable and open Security Incident Response Platform (TheHive) that enables the sharing of information about security Incidents and helps different organizations better understand threats and proactively defend their systems and networks.