Browsing by Author "Yuan, Xin"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- Data-Agnostic Model Poisoning against Federated Learning: A Graph Autoencoder ApproachPublication . Li, Kai; Zheng, Jingjing; Yuan, Xin; Ni, Wei; Akan, Ozgur B.; Poor, H. VincentThis paper proposes a novel, data-agnostic, model poisoning attack on Federated Learning (FL), by designing a new adversarial graph autoencoder (GAE)-based framework. The attack requires no knowledge of FL training data and achieves both effectiveness and undetectability. By listening to the benign local models and the global model, the attacker extracts the graph structural correlations among the benign local models and the training data features substantiating the models. The attacker then adversarially regenerates the graph structural correlations while maximizing the FL training loss, and subsequently generates malicious local models using the adversarial graph structure and the training data features of the benign ones. A new algorithm is designed to iteratively train the malicious local models using GAE and sub-gradient descent. The convergence of FL under attack is rigorously proved, with a considerably large optimality gap. Experiments show that the FL accuracy drops gradually under the proposed attack and existing defense mechanisms fail to detect it. The attack can give rise to an infection across all benign devices, making it a serious threat to FL.
- Deep Graph-based Reinforcement Learning for Joint Cruise Control and Task Offloading for Aerial Edge Internet-of-Things (EdgeIoT)Publication . Li, Kai; Ni, Wei; Yuan, Xin; Noor, Alam; Jamalipour, AbbasThis paper puts forth an aerial edge Internet-of-Things (EdgeIoT) system, where an unmanned aerial vehicle (UAV) is employed as a mobile edge server to process mission-critical computation tasks of ground Internet-of-Things (IoT) devices. When the UAV schedules an IoT device to offload its computation task, the tasks buffered at the other unselected devices could be outdated and have to be cancelled. We investigate a new joint optimization of UAV cruise control and task offloading allocation, which maximizes tasks offloaded to the UAV, subject to the IoT device’s computation capacity and battery budget, and the UAV’s speed limit. Since the optimization contains a large solution space while the instantaneous network states are unknown to the UAV, we propose a new deep graph-based reinforcement learning framework. An advantage actor-critic (A2C) structure is developed to train the real-time continuous actions of the UAV in terms of the flight speed, heading, and the offloading schedule of the IoT device. By exploring hidden representations resulting from the network feature correlation, our framework takes advantage of graph neural networks (GNN) to supervise the training of UAV’s actions in A2C. The proposed GNN-A2C framework is implemented with Google Tensorflow. The performance analysis shows that GNN-A2C achieves fast convergence and reduces considerably the task missing rate in aerial EdgeIoT.
- Leverage variational graph representation for model poisoning on federated learningPublication . Li, Kai; Yuan, Xin; Zheng, Jingjing; Ni, Wei; Dressler, Falko; Jamalipour, AbbasThis article puts forth a new training data-untethered model poisoning (MP) attack on federated learning (FL). The new MP attack extends an adversarial variational graph autoencoder (VGAE) to create malicious local models based solely on the benign local models overheard without any access to the training data of FL. Such an advancement leads to the VGAE-MP attack that is not only efficacious but also remains elusive to detection. VGAE-MP attack extracts graph structural correlations among the benign local models and the training data features, adversarially regenerates the graph structure, and generates malicious local models using the adversarial graph structure and benign models’ features. Moreover, a new attacking algorithm is presented to train the malicious local models using VGAE and sub-gradient descent, while enabling an optimal selection of the benign local models for training the VGAE. Experiments demonstrate a gradual drop in FL accuracy under the proposed VGAE-MP attack and the ineffectiveness of existing defense mechanisms in detecting the attack, posing a severe threat to FL.
- Towards Ubiquitous Semantic Metaverse: Challenges, Approaches, and OpportunitiesPublication . Li, Kai; Lau, Billy Pik Lik; Yuan, Xin; Ni, Wei; Guizani, Mohsen; Yuen, ChauIn recent years, ubiquitous semantic Metaverse has been studied to revolutionize immersive cyber-virtual experiences for augmented reality (AR) and virtual reality (VR) users, which leverages advanced semantic understanding and representation to enable seamless, context-aware interactions within mixed-reality environments. This survey focuses on the intelligence and spatio-temporal characteristics of four fundamental system components in ubiquitous semantic Metaverse, i.e., artificial intelligence (AI), spatio-temporal data representation (STDR), semantic Internet of Things (SIoT), and semantic-enhanced digital twin (SDT). We thoroughly survey the representative techniques of the four fundamental system components that enable intelligent, personalized, and context-aware interactions with typical use cases of the ubiquitous semantic Metaverse, such as remote education, work and collaboration, entertainment and socialization, healthcare, and e-commerce marketing. Furthermore, we outline the opportunities for constructing the future ubiquitous semantic Metaverse, including scalability and interoperability, privacy and security, performance measurement and standardization, as well as ethical considerations and responsible AI. Addressing those challenges is important for creating a robust, secure, and ethically sound system environment that offers engaging immersive experiences for the users and AR/VR applications.
- When Internet of Things meets Metaverse: Convergence of Physical and Cyber WorldsPublication . Li, Kai; Cui, Yingping; Li, Weicai; Lv, Tiejun; Yuan, Xin; Li, Shenghong; Ni, Wei; Simsek, Meryem; Dressler, FalkoIn recent years, the Internet of Things (IoT) is studied in the context of the Metaverse to provide users immersive cyber-virtual experiences in mixed reality environments. This survey introduces six typical IoT applications in the Metaverse, including collaborative healthcare, education, smart city, entertainment, real estate, and socialization. In the IoT-inspired Metaverse, we also comprehensively survey four pillar technologies that enable augmented reality (AR) and virtual reality (VR), namely, responsible artificial intelligence (AI), high-speed data communications, cost-effective mobile edge computing (MEC), and digital twins. According to the physical-world demands, we outline the current industrial efforts and seven key requirements for building the IoT-inspired Metaverse: immersion, variety, economy, civility, interactivity, authenticity, and independence. In addition, this survey describes the open issues in the IoT-inspired Metaverse, which need to be addressed to eventually achieve the convergence of physical and cyber worlds.