Browsing by Author "Viana, Ana"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- 2-echelon lastmile delivery with lockers and occasional couriersPublication . Santos, André Gustavo dos; Viana, Ana; Pedroso, João PedroWe propose a new approach for the lastmile delivery problem where, besides serving as collecting points of orders for customers, parcel lockers are also used as transshipment nodes in a 2-echelon delivery system. Moreover, we consider that a customer (occasional courier) visiting a locker may accept a compensation to make a delivery to another customer on their regular traveling path. The proposed shared use of the locker facilities – by customers that prefer to self-pick up their orders, and also as a transfer deposit for customers that prefer home delivery – will contribute to better usage of an already available storage capacity. Furthermore, the use of occasional couriers (OCs) brings an extra layer of flexibility to the delivery process and may positively contribute to achieving some environmental goals: although non-consolidation of deliveries may, at first sight, seem negative, by only considering OCs that would go to the locker independently of making or not a delivery on their way home, and their selection being constrained by a maximum detour, the carbon footprint can be potentially reduced when compared to that of dedicated vehicles. We present a mixed-integer linear programming formulation for the problem that integrates three delivery options – depot to locker, depot to locker followed by final delivery by a professional fleet, and depot to locker followed by final delivery by an OC. Furthermore, to assess the impact of OCs’ no show on the delivery process, we extend the formulation to re-schedule the delivery of previous undelivered parcels, and analyze the impact of different no-show rates. Thorough computational experiments show that the use of OCs has a positive impact both on the delivery cost and on the total distance traveled by the dedicated fleets. Experiments also show that the negative impact of no-shows may be reduced by using lockers with higher capacities.
- Maximising expectation of the number of transplants in kidney exchange programmesPublication . Klimentova, Xenia; Pedroso, João Pedro; Viana, AnaThis paper addresses the problem of maximising the expected number of transplants in kidney exchange programmes. New schemes for matching rearrangement in case of failure are presented, along with a new tree search algorithm used for the computation of optimal expected values. Extensive computa-tional experiments demonstrate the effectiveness of the algorithm and reveal a clear superiority of a newly proposed scheme, subset-recourse, as compared to previously known approaches.
- New insights on integer-programming models for the kidney exchange problemPublication . Constantino, Miguel; Klimentova, Xenia; Viana, Ana; Rais, AbdurIn recent years several countries have set up policies that allow exchange of kidneys between two or more incompatible patient–donor pairs. These policies lead to what is commonly known as kidney exchange programs. The underlying optimization problems can be formulated as integer programming models. Previously proposed models for kidney exchange programs have exponential numbers of constraints or variables, which makes them fairly difficult to solve when the problem size is large. In this work we propose two compact formulations for the problem, explain how these formulations can be adapted to address some problem variants, and provide results on the dominance of some models over others. Finally we present a systematic comparison between our models and two previously proposed ones via thorough computational analysis. Results show that compact formulations have advantages over non-compact ones when the problem size is large.
- A new MILP based approach for unit commitment in power production planningPublication . Viana, Ana; Pedroso, J. P.This paper presents a complete, quadratic programming formulation of the standard thermal unit commitment problem in power generation planning, together with a novel iterative optimisation algorithm for its solution. The algorithm, based on a mixed-integer formulation of the problem, considers piecewise linear approximations of the quadratic fuel cost function that are dynamically updated in an iterative way, converging to the optimum; this avoids the requirement of resorting to quadratic programming, making the solution process much quicker. From extensive computational tests on a broad set of benchmark instances of this problem, the algorithm was found to be flexible and capable of easily incorporating different problem constraints. Indeed, it is able to tackle ramp constraints, which although very important in practice were rarely considered in previous publications. Most importantly, optimal solutions were obtained for several well-known benchmark instances, including instances of practical relevance, that are not yet known to have been solved to optimality. Computational experiments and their results showed that the method proposed is both simple and extremely effective.
- The probabilistic travelling salesman problem with crowdsourcingPublication . Santini, Alberto; Viana, Ana; Klimentova, Xenia; Pedroso, João PedroWe study a variant of the Probabilistic Travelling Salesman Problem arising when retailers crowdsource last-mile deliveries to their own customers, who can refuse or accept in exchange for a reward. A planner must identify which deliveries to offer, knowing that all deliveries need fulfilment, either via crowdsourcing or using the retailer’s own vehicle. We formalise the problem and position it in both the literature about crowdsourcing and among routing problems in which not all customers need a visit. We show that to evaluate the objective function of this stochastic problem for even one solution, one needs to solve an exponential number of Travelling Salesman Problems. To address this complexity, we propose Machine Learning and Monte Carlo simulation methods to approximate the objective function, and both a branch-and-bound algorithm and heuristics to reduce the number of evaluations. We show that these approaches work well on small size instances and derive managerial insights on the economic and environmental benefits of crowdsourcing to customers.