Browsing by Author "Sousa, Mariana P."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Development of colorimetric cellulose-based test-strip for the rapid detection of antibodies against SARS-CoV2 virusPublication . Correia, Bárbara P.; Sousa, Mariana P.; Sousa, Cristina E. A.; Mateus, Daniela; Sebastião, Ana Isabel; Cruz, Maria Teresa; Matos, Ana Miguel; Santos Pereira, Ana Cláudia; Moreira, FelisminaGiven the pandemic situation, there is an urgent need for an accurate test to monitor antibodies anti-SARS-CoV-2, providing crucial epidemiological and clinical information to monitor the evolution of coronavirus disease in 2019 (COVID-19) and to stratify the immunized and asymptomatic population. Therefore, this paper describes a new cellulosebased test strip for rapid and cost-efective quantitative detection of antibodies to SARS-CoV2 virus by colorimetric transduction. For this purpose, Whatman paper was chemically modifed with sodium metaperiodate to introduce aldehyde groups on its surface. Subsequently, the spike protein of the virus is covalently bound by forming an imine group. The chemical control of cellulose paper modifcation was evaluated by Fourier transform infrared spectroscopy, thermogravimetry and contact angle analysis. Colorimetric detection of the antibodies was performed by a conventional staining method using Ponceau S solution as the dye. Color analysis was performed after image acquisition with a smartphone using Image J software. The color intensity varied linearly with the logarithm of the anti-S concentration (from 10 ng/mL to 1 μg/mL) in 500-fold diluted serum samples when plotted against the green coordinate extracted from digital images. The test strip was selective in the presence of nucleocapsid antibodies, urea, glucose, and bovine serum albumin with less than 15% interference, and detection of antibodies in human serum was successfully performed. Overall, this is a simple and afordable design that can be readily used for mass Abstract Given the pandemic situation, there is an population screening and does not require sophisticated equipment or qualifed personnel
- New Quantum-Dot-Based Fluorescent Immunosensor for Cancer Biomarker DetectionPublication . Sousa, Mariana P.; Piloto, Ana Margarida L.; Pereira, Ana Cláudia; Schmitt, Fernando; Fernandes, Ruben; Moreira, Felismina T. C.Cancer antigen 15-3 (CA 15-3) is a biomarker for breast cancer used to monitor response to treatments and disease recurrence. The present work demonstrates the preparation and application of a fluorescent biosensor for ultrasensitive detection of the cancer antigen CA 15-3 protein tumor marker using mercaptopropionic-acid-functionalized cadmium telluride (CdTe@MPA) quantum dots (QDs) conjugated with CA 15-3 antibodies. First, the QDs were synthesized by the hydrothermal route, resulting in spherical nanoparticles up to 3.50 nm in diameter. Subsequently, the QD conjugates were characterized by Fourier transform infrared spectroscopy (FTIR), UV absorption, and fluorescence. The interaction between the conjugates and the protein was studied by fluorescence spectroscopy in buffer and in 10-fold diluted commercial human serum. Calibration in spiked serum samples gave a detection limit of 0.027 U/mL, 1000-fold lower than the clinical limit for CA 15-3 (25 U/mL to 30 U/mL), indicating that this is an ultrasensitive technique. In addition, a rapid response was obtained within 10 min. The biosensor was selective in the presence of the interfering serum proteins BSA, CEA, and CA-125, with a maximum interference of 2% for BSA. The percent recovery was close to 100% with maximum relative standard deviation (RSD%) values of 1.56. Overall, the developed CA 15-3 biosensor provides a simple and sensitive method for ultrasensitive monitoring of breast cancer, as well as the ability to detect other molecules of interest in human serum matrices.