Browsing by Author "Silva, Marco"
Now showing 1 - 10 of 32
Results Per Page
Sort Options
- Adaptive tool for automatic data collection of real electricity marketsPublication . Praça, Isabel; Sousa, Tiago; Freitas, A.; Pinto, Tiago; Vale, Zita; Silva, MarcoThe study of electricity markets operation has been gaining an increasing importance in last years, as result of the new challenges that the electricity markets restructuring produced. This restructuring increased the competitiveness of the market, but with it its complexity. The growing complexity and unpredictability of the market’s evolution consequently increases the decision making difficulty. Therefore, the intervenient entities are forced to rethink their behaviour and market strategies. Currently, lots of information concerning electricity markets is available. These data, concerning innumerous regards of electricity markets operation, is accessible free of charge, and it is essential for understanding and suitably modelling electricity markets. This paper proposes a tool which is able to handle, store and dynamically update data. The development of the proposed tool is expected to be of great importance to improve the comprehension of electricity markets and the interactions among the involved entities.
- An integrated approach for distributed energy resource short term scheduling in smart grids considering realistic power system simulationPublication . Silva, Marco; Morais, H.; Vale, ZitaThe large increase of distributed energy resources, including distributed generation, storage systems and demand response, especially in distribution networks, makes the management of the available resources a more complex and crucial process. With wind based generation gaining relevance, in terms of the generation mix, the fact that wind forecasting accuracy rapidly drops with the increase of the forecast anticipation time requires to undertake short-term and very short-term re-scheduling so the final implemented solution enables the lowest possible operation costs. This paper proposes a methodology for energy resource scheduling in smart grids, considering day ahead, hour ahead and five minutes ahead scheduling. The short-term scheduling, undertaken five minutes ahead, takes advantage of the high accuracy of the very-short term wind forecasting providing the user with more efficient scheduling solutions. The proposed method uses a Genetic Algorithm based approach for optimization that is able to cope with the hard execution time constraint of short-term scheduling. Realistic power system simulation, based on PSCAD , is used to validate the obtained solutions. The paper includes a case study with a 33 bus distribution network with high penetration of distributed energy resources implemented in PSCAD .
- Contextual and Environmental Awareness Laboratory for Energy Consumption ManagementPublication . Gomes, Luis; Fernandes, Filipe; Faria, Pedro; Silva, Marco; Vale, Zita; Ramos, CarlosThe recent changes on power systems paradigm requires the active participation of small and medium players in energy management. With an electricity price fluctuation these players must manage the consumption. Lowering costs and ensuring adequate user comfort levels. Demand response can improve the power system management and bring benefits for the small and medium players. The work presented in this paper, which is developed aiming the smart grid context, can also be used in the current power system paradigm. The proposed system is the combination of several fields of research, namely multi-agent systems and artificial neural networks. This system is physically implemented in our laboratories and it is used daily by researchers. The physical implementation gives the system an improvement in the proof of concept, distancing itself from the conventional systems. This paper presents a case study illustrating the simulation of real-time pricing in a laboratory.
- Contextual intelligent load management with ANN adaptive learning modulePublication . Gomes, Luis; Fernandes, Filipe; Sousa, Tiago; Silva, Marco; Morais, H.; Vale, Zita; Ramos, CarlosWith the current increase of energy resources prices and environmental concerns intelligent load management systems are gaining more and more importance. This paper concerns a SCADA House Intelligent Management (SHIM) system that includes an optimization module using deterministic and genetic algorithm approaches. SHIM undertakes contextual load management based on the characterization of each situation. SHIM considers available generation resources, load demand, supplier/market electricity price, and consumers’ constraints and preferences. The paper focus on the recently developed learning module which is based on artificial neural networks (ANN). The learning module allows the adjustment of users’ profiles along SHIM lifetime. A case study considering a system with fourteen discrete and four variable loads managed by a SHIM system during five consecutive similar weekends is presented.
- Distributed energy resource short-term scheduling using signaled particle swarm optimizationPublication . Soares, João; Silva, Marco; Sousa, Tiago; Vale, Zita; Morais, H.Distributed Energy Resources (DER) scheduling in smart grids presents a new challenge to system operators. The increase of new resources, such as storage systems and demand response programs, results in additional computational efforts for optimization problems. On the other hand, since natural resources, such as wind and sun, can only be precisely forecasted with small anticipation, short-term scheduling is especially relevant requiring a very good performance on large dimension problems. Traditional techniques such as Mixed-Integer Non-Linear Programming (MINLP) do not cope well with large scale problems. This type of problems can be appropriately addressed by metaheuristics approaches. This paper proposes a new methodology called Signaled Particle Swarm Optimization (SiPSO) to address the energy resources management problem in the scope of smart grids, with intensive use of DER. The proposed methodology’s performance is illustrated by a case study with 99 distributed generators, 208 loads, and 27 storage units. The results are compared with those obtained in other methodologies, namely MINLP, Genetic Algorithm, original Particle Swarm Optimization (PSO), Evolutionary PSO, and New PSO. SiPSO performance is superior to the other tested PSO variants, demonstrating its adequacy to solve large dimension problems which require a decision in a short period of time.
- Distributed energy resources scheduling considering real-time resources forecastPublication . Silva, Marco; Sousa, Tiago; Ramos, Sérgio; Vale, Zita; Morais, HugoEnergy resource scheduling is becoming increasingly important, such as the use of more distributed generators and electric vehicles connected to the distribution network. This paper proposes a methodology to be used by Virtual Power Players (VPPs), regarding the energy resource scheduling in smart grids and considering day-ahead, hour-ahead and realtime time horizons. This method considers that energy resources are managed by a VPP which establishes contracts with their owners. The full AC power flow calculation included in the model takes into account network constraints. In this paper, distribution function errors are used to simulate variations between time horizons, and to measure the performance of the proposed methodology. A 33-bus distribution network with large number of distributed resources is used.
- Distribution network short term scheduling in Smart Grid contextPublication . Silva, Marco; Morais, H.; Vale, ZitaThe large increase of Distributed Generation (DG) in Power Systems (PS) and specially in distribution networks makes the management of distribution generation resources an increasingly important issue. Beyond DG, other resources such as storage systems and demand response must be managed in order to obtain more efficient and “green” operation of PS. More players, such as aggregators or Virtual Power Players (VPP), that operate these kinds of resources will be appearing. This paper proposes a new methodology to solve the distribution network short term scheduling problem in the Smart Grid context. This methodology is based on a Genetic Algorithms (GA) approach for energy resource scheduling optimization and on PSCAD software to obtain realistic results for power system simulation. The paper includes a case study with 99 distributed generators, 208 loads and 27 storage units. The GA results for the determination of the economic dispatch considering the generation forecast, storage management and load curtailment in each period (one hour) are compared with the ones obtained with a Mixed Integer Non-Linear Programming (MINLP) approach.
- Dynamic Energy Management Method with Demand Response Interaction Applied in an Office BuildingPublication . Fernandes, Filipe; Gomes, Luis; Morais, Hugo; Silva, Marco; Vale, Zita; Corchado, Juan M.The intelligent management systems of the end consumers are endowed with advanced functions being one of them the interaction with external entities through the automatic participation in demand response programs. The development of the intelligent management systems is to reduce the energy consumption based on internal information and on the interaction with an external entity. Moreover, the management approaches results in an active participation of the consumers in the operation of the smart grids and microgrids concepts. The paper developed presents the application of a dynamic priority method in SCADA Office Intelligent Context Awareness Management system to manage the energy resources installed in an office building. The intelligent management method allows the dynamic active participation of the office building in the DR events considering the real data of consumption and generation of one building in Polytechnic of Porto. The main goal of the methodology is to obtain a dynamic scheduling for all energy resources with little interference in the comfort of users. The results of dynamic management model in office building are discussed for the participation in 8 hours demand response event. The power limit of the scenario depends on the consumption and micro-generation power of an October day.
- Energy and Reserve under Distributed Energy Resources Management—Day-Ahead, Hour-Ahead and Real-TimePublication . Soares, Tiago; Silva, Marco; Sousa, Tiago; Morais, Hugo; Vale, ZitaThe increasing penetration of distributed energy resources based on renewable energy sources in distribution systems leads to a more complex management of power systems. Consequently, ancillary services become even more important to maintain the system security and reliability. This paper proposes and evaluates a generic model for day-ahead, intraday (hour-ahead) and real-time scheduling, considering the joint optimization of energy and reserve in the scope of the virtual power player concept. The model aims to minimize the operation costs in the point of view of one aggregator agent taking into account the balance of the distribution system. For each scheduling stage, previous scheduling results and updated forecasts are considered. An illustrative test case of a distribution network with 33 buses, considering a large penetration of distribution energy resources allows demonstrating the benefits of the proposed model.
- Energy resources management in three distinct time horizons considering a large variation in wind powerPublication . Silva, Marco; Morais, Hugo; Sousa, Tiago; Vale, ZitaThe intensive use of distributed generation based on renewable resources increases the complexity of power systems management, particularly the short-term scheduling. Demand response, storage units and electric and plug-in hybrid vehicles also pose new challenges to the short-term scheduling. However, these distributed energy resources can contribute significantly to turn the shortterm scheduling more efficient and effective improving the power system reliability. This paper proposes a short-term scheduling methodology based on two distinct time horizons: hour-ahead scheduling, and real-time scheduling considering the point of view of one aggregator agent. In each scheduling process, it is necessary to update the generation and consumption operation, and the storage and electric vehicles status. Besides the new operation condition, more accurate forecast values of wind generation and consumption are available, for the resulting of short-term and very short-term methods. In this paper, the aggregator has the main goal of maximizing his profits while, fulfilling the established contracts with the aggregated and external players.