Browsing by Author "Renaut, Jenny"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Effects of interaction and bioaccessibility of the cyanotoxins microcystin and cylindrospermopsin in aquatic and terrestrial speciesPublication . Freitas, Marisa; Azevedo, Joana; Carvalho, António Paulo; Planchon, Sébastien; Renaut, Jenny; Mendes, Vera; Manadas, Bruno; Pinto, Edgar; Barreiro, Aldo; Neves, Joana; Campos, Alexandre; Vasconcelos, VitorThe occurrence and proliferation of toxic cyanobacteria blooms as a potential consequence of eutrophication and climate change are an emergent environmental concern worldwide. Microcystin-LR (MC-LR), mainly produced by Microcystisaeruginosa is the most documented and studied cyanotoxin. Cylindrospermopsin (CYN) has been recognized of increased concern due to the invasive nature of its main producer, Cylindrospermopsisraciborskii. Recent studies support the hypothesis that MC-LR and CYN exert harmful effects on crop plants. Lettuce, Lactuca sativa, is an important commercial leafy vegetable, which supplies important components for a healthy diet (e.g., fibers, minerals and antioxidants). Therefore, it is of particular interest the knowledge of lettuce sensitivity to ecologically relevant concentrations of cyanotoxins, inclusively mixtures. Proteomic technologies seem to be suitable to investigate the effects of MC-LR and CYN and may allow the identification of early stress responses, which are not perceptible by traditional endpoints. Proteomics may also provide new insights of protein biomarkers of exposure and the identification of allergenic proteins, which may be of interest for human health risk assessment. However, human health problems due to MC-LR and CYN are most likely associated to its chronic exposure by drinking water and contaminated food. Previous studies have shown that aquatic organisms, especially bivalves (filter-feeding organisms), can accumulate high levels of cyanotoxins without lethal effect. Based on the potential for human health risks, a provisional tolerable daily intake (TDI) of 0.04 and 0.03μg/kg-body weight, has been established for MC-LR and CYN, respectively. However, the risks associated to the consumption of contaminated food may increase if the consumers use storage and processing practices that enhance the concentration of cyanotoxins and their bioaccessibility. It has been reported that MCs are stable at high concentration of cyanotoxins and their bioaccessibility. It has been reported that MCs are stable at high temperatures (above 300 °C) and they can with stand several hours boiling. Likewise, CYN is highly watersoluble and stable to extreme temperatures and pHs, thus the knowledge of the influence of storage and cooking practices as well as human digestion on MC-LR and CYN concentration in food is required to a more accurate human risk assessment.
- Exposure of Lycopersicon Esculentum to Microcystin-LR: Effects in the Leaf Proteome and Toxin Translocation from Water to Leaves and FruitsPublication . Gutiérrez-Praena, Daniel; Campos, Alexandre; Azevedo, Joana; Neves, Joana; Freitas, Marisa; Guzmán-Guillén, Remédios; Cameán, Ana María; Renaut, Jenny; Vasconcelos, VítorNatural toxins such as those produced by freshwater cyanobacteria have been regarded as an emergent environmental threat. However, the impact of these water contaminants in agriculture is not yet fully understood. The aim of this work was to investigate microcystin-LR (MC-LR) toxicity in Lycopersicon esculentum and the toxin accumulation in this horticultural crop. Adult plants (2 month-old) grown in a greenhouse environment were exposed for 2 weeks to either pure MC-LR (100 μg/L) or Microcystis aeruginosa crude extracts containing 100 μg/L MC-LR. Chlorophyll fluorescence was measured, leaf proteome investigated with two-dimensional gel electrophoresis and Matrix Assisted Laser Desorption Ionization Time-of-Flight (MALDI-TOF)/TOF, and toxin bioaccumulation assessed by liquid chromatography-mass spectrometry (LC-MS)/MS. Variations in several protein markers (ATP synthase subunits, Cytochrome b6-f complex iron-sulfur, oxygen-evolving enhancer proteins) highlight the decrease of the capacity of plants to synthesize ATP and to perform photosynthesis, whereas variations in other proteins (ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit and ribose-5-phosphate isomerase) suggest an increase of carbon fixation and decrease of carbohydrate metabolism reactions in plants exposed to pure MC-LR and cyanobacterial extracts, respectively. MC-LR was found in roots (1635.21 μg/kg fw), green tomatoes (5.15–5.41 μg/kg fw), mature tomatoes (10.52–10.83 μg/kg fw), and leaves (12,298.18 μg/kg fw). The results raise concerns relative to food safety and point to the necessity of monitoring the bioaccumulation of water toxins in agricultural systems affected by cyanotoxin contamination.
- Lettuce (Lactuca sativa L.) leaf-proteome profiles after exposure to cylindrospermopsin and a microcystin-LR/cylindrospermopsin mixture: A concentration-dependent responsePublication . Freitas, Marisa; Campos, Alexandre; Azevedo, Joana; Barreiro, Aldo; Planchon, Sébastien; Renaut, Jenny; Vasconcelos, VítorThe intensification of agricultural productivity is an important challenge worldwide. However, environmental stressors can provide challenges to this intensification. The progressive occurrence of the cyanotoxins cylindrospermopsin (CYN) and microcystin-LR (MC-LR) as a potential consequence of eutrophication and climate change is of increasing concern in the agricultural sector because it has been reported that these cyanotoxins exert harmful effects in crop plants. A proteomic-based approach has been shown to be a suitable tool for the detection and identification of the primary responses of organisms exposed to cyanotoxins. The aim of this study was to compare the leaf-proteome profiles of lettuce plants exposed to environmentally relevant concentrations of CYN and a MC-LR/CYN mixture. Lettuce plants were exposed to 1, 10, and 100 lg/l CYN and a MC-LR/CYN mixture for five days. The proteins of lettuce leaves were separated by twodimensional electrophoresis (2-DE), and those that were differentially abundant were then identified by matrix-assisted laser desorption/ionization time of flight-mass spectrometry (MALDI-TOF/TOF MS). The biological functions of the proteins that were most represented in both experiments were photosynthesis and carbon metabolism and stress/defense response. Proteins involved in protein synthesis and signal transduction were also highly observed in the MC-LR/CYN experiment. Although distinct protein abundance patterns were observed in both experiments, the effects appear to be concentration-dependent, and the effects of the mixture were clearly stronger than those of CYN alone. The obtained results highlight the putative tolerance of lettuce to CYN at concentrations up to 100 lg/l. Furthermore, the combination of CYN with MC-LR at low concentrations (1 lg/l) stimulated a significant increase in the fresh weight (fr. wt) of lettuce leaves and at the proteomic level resulted in the increase in abundance of a high number of proteins. In contrast, many proteins exhibited a decrease in abundance or were absent in the gels of the simultaneous exposure to 10 and 100 lg/l MC-LR/CYN. In the latter, also a significant decrease in the fr. wt of lettuce leaves was obtained. These findings provide important insights into the molecular mechanisms of the lettuce response to CYN and MC-LR/CYN and may contribute to the identification of potential protein markers of exposure and proteins that may confer tolerance to CYN and MC-LR/CYN. Furthermore, because lettuce is an important crop worldwide, this study may improve our understanding of the potential impact of these cyanotoxins on its quality traits (e.g., presence of allergenic proteins).