Browsing by Author "Noronha, J.P."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Emerging (Bio)Sensing Technology for Assessing and Monitoring Freshwater Contamination – Methods and ApplicationsPublication . Queirós, Raquel B.; Noronha, J.P.; Marques, P.V.S.; Sales, M. Goreti F.Water is life and its preservation is not only a moral obligation but also a legal requirement. By 2030, global demands will exceed more than 40 % the existing resources and more than a third of the world's population will have to deal with water shortages (European Environmental Agency [EEA], 2010). Climate change effects on water resources will not help. Efforts are being made throughout Europe towards a reduced and efficient water use and prevention of any further deterioration of the quality of water (Eurostat, European Comission [EC], 2010). The Water Framework Directive (EC, 2000) lays down provisions for monitoring, assessing and classifying water quality. Supporting this, the Drinking Water sets standards for 48 microbiological and chemical parameters that must be monitored and tested regularly (EC, 1998). The Bathing Water Directive also sets concentration limits for microbiological pollutants in inland and coastal bathing waters (EC, 2006), addressing risks from algae and cyanobacteria contamination and faecal contamination, requiring immediate action, including the provision of information to the public, to prevent exposure. With these directives, among others, the European Union [EU] expects to offer its citizens, by 2015, fresh and coastal waters of good quality.
- Protein imprinted materials designed with charged binding sites on screen-printed electrode for microseminoprotein-beta determination in biological samplesPublication . Rebelo, Tânia S.C.R.; Pereira, Carlos M.; Sales, Goreti; Noronha, J.P.; Silva, FernandoIn the past few years a large effort is being made aiming at the development of fast and reliable tests for cancer biomarkers. Protein imprinted sensors can be a fast and reliable strategy to develop tailor made sensors for a large number of relevant molecules. This work aims to produce, optimize and use in biological samples a biosensor for microseminoprotein-beta (MSMB). Caffeic acid (CAF) electropolimerization was performed in the presence of microseminoprotein-beta (MSMB) creating target protein specific cavities on the surface of a screen-printed carbon. Dopamine was introduced as charged monomer labelling the binding site and was allowed to self-organize around the protein. The subsequent electropolimerization was made by applying a constant potential of +2.0 V, for 30 s, on a carbon screen-printed electrode, immersed in a solution of protein and CAF prepared in phosphate buffer. The sensor with charged monomers showed a more sensitive response, with an average slope of−7.59 A/decade, linear concentration range of 0.5–100 ng/mL and a detection limit of 0.12 ng/mL. The corresponding non-imprinted sensor displayed an inconsistent response over the range of the calibration curve. The biosensor was successfully applied to the analysis of MSMB in serum and urine samples.