Browsing by Author "Morais, Hugo"
Now showing 1 - 10 of 69
Results Per Page
Sort Options
- Adaptive learning in agents behaviour: A framework for electricity markets simulationPublication . Pinto, Tiago; Vale, Zita; Sousa, Tiago; Praça, Isabel; Santos, Gabriel; Morais, HugoElectricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market simulator that models market players and simulates their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. This paper presents a methodology to provide decision support to electricity market negotiating players. This model allows integrating different strategic approaches for electricity market negotiations, and choosing the most appropriate one at each time, for each different negotiation context. This methodology is integrated in ALBidS (Adaptive Learning strategic Bidding System) – a multiagent system that provides decision support to MASCEM's negotiating agents so that they can properly achieve their goals. ALBidS uses artificial intelligence methodologies and data analysis algorithms to provide effective adaptive learning capabilities to such negotiating entities. The main contribution is provided by a methodology that combines several distinct strategies to build actions proposals, so that the best can be chosen at each time, depending on the context and simulation circumstances. The choosing process includes reinforcement learning algorithms, a mechanism for negotiating contexts analysis, a mechanism for the management of the efficiency/effectiveness balance of the system, and a mechanism for competitor players' profiles definition.
- Adaptive Portfolio Optimization for Multiple Electricity Markets ParticipationPublication . Pinto, Tiago; Morais, Hugo; Sousa, Tiago M.; Sousa, Tiago; Vale, Zita; Praça, Isabel; Faia, Ricardo; Pires, Eduardo José SolteiroThe increase of distributed energy resources, mainly based on renewable sources, requires new solutions that are able to deal with this type of resources’ particular characteristics (namely, the renewable energy sources intermittent nature). The smart grid concept is increasing its consensus as the most suitable solution to facilitate the small players’ participation in electric power negotiations while improving energy efficiency. The opportunity for players’ participation in multiple energy negotiation environments (smart grid negotiation in addition to the already implemented market types, such as day-ahead spot markets, balancing markets, intraday negotiations, bilateral contracts, forward and futures negotiations, and among other) requires players to take suitable decisions on whether to, and how to participate in each market type. This paper proposes a portfolio optimization methodology, which provides the best investment profile for a market player, considering different market opportunities. The amount of power that each supported player should negotiate in each available market type in order to maximize its profits, considers the prices that are expected to be achieved in each market, in different contexts. The price forecasts are performed using artificial neural networks, providing a specific database with the expected prices in the different market types, at each time. This database is then used as input by an evolutionary particle swarm optimization process, which originates the most advantage participation portfolio for the market player. The proposed approach is tested and validated with simulations performed in multiagent simulator of competitive electricity markets, using real electricity markets data from the Iberian operator—MIBEL.
- Adjacent Markets Influence Over Electricity Trading—Iberian Benchmark StudyPublication . Morais, Hugo; Pinto, Tiago; Vale, ZitaThis paper presents a study on the impact of adjacent markets on the electricity market, realizing the advantages of acting in several different markets. The increased use of renewable primary sources to generate electricity and new usages of electricity such as electric mobility are contributing to a better and more rational way of living. The investment in renewable technologies for the distributed generation has been creating new opportunities for owners of such technologies. Besides the selling of electricity and related services (ancillary services) in energy markets, players can participate and negotiate in other markets, such as the carbon/CO2 market, the guarantees of origin market, or provide district heating services selling of steam and hot water among others. These market mechanisms are related to the energy market, originating a wide market strategy improving the benefits of using distributed generators. This paper describes several adjacent markets and how do they complement the electricity market. The paper also shows how the simulation of electricity and adjacent markets can be performed, using an electricity market simulator, and demonstrates, based on market simulations using real data from the Iberian market, that the participation in various complementary markets can enable power producers to obtain extra profits that are essential to cover the production costs and facilities maintenance. The findings of this paper enhance the advantages for investment on energy production based renewable sources and more efficient technologies of energy conversion
- Application-specific modified particle swarm optimization for energy resource scheduling considering vehicle-to-gridPublication . Soares, João; Sousa, Tiago; Morais, Hugo; Vale, Zita; Canizes, Bruno; Silva, António S.This paper presents a modified Particle Swarm Optimization (PSO) methodology to solve the problem of energy resources management with high penetration of distributed generation and Electric Vehicles (EVs) with gridable capability (V2G). The objective of the day-ahead scheduling problem in this work is to minimize operation costs, namely energy costs, regarding he management of these resources in the smart grid context. The modifications applied to the PSO aimed to improve its adequacy to solve the mentioned problem. The proposed Application Specific Modified Particle Swarm Optimization (ASMPSO) includes an intelligent mechanism to adjust velocity limits during the search process, as well as self-parameterization of PSO parameters making it more user-independent. It presents better robustness and convergence characteristics compared with the tested PSO variants as well as better constraint handling. This enables its use for addressing real world large-scale problems in much shorter times than the deterministic methods, providing system operators with adequate decision support and achieving efficient resource scheduling, even when a significant number of alternative scenarios should be considered. The paper includes two realistic case studies with different penetration of gridable vehicles (1000 and 2000). The proposed methodology is about 2600 times faster than Mixed-Integer Non-Linear Programming (MINLP) reference technique, reducing the time required from 25 h to 36 s for the scenario with 2000 vehicles, with about one percent of difference in the objective function cost value.
- Automatic Electricity Markets Data Extraction for Realistic Multi-agent SimulationsPublication . Pereira, Ivo; Sousa, Tiago; Praça, Isabel; Freitas, Ana; Pinto, Tiago; Vale, Zita; Morais, HugoElectricity markets worldwide suffered profound transformations. The privatization of previously nationally owned systems; the deregulation of privately owned systems that were regulated; and the strong interconnection of national systems, are some examples of such transformations [1, 2]. In general, competitive environments, as is the case of electricity markets, require good decision-support tools to assist players in their decisions. Relevant research is being undertaken in this field, namely concerning player modeling and simulation, strategic bidding and decision-support.
- Coalition of distributed generation units to Virtual Power Players - a game theory approachPublication . Morais, Hugo; Sousa, Tiago M.; Santos, Gabriel; Pinto, Tiago; Praça, Isabel; Vale, ZitaSmart Grids (SGs) have emerged as the new paradigm for power system operation and management, being designed to include large amounts of distributed energy resources. This new paradigm requires new Energy Resource Management (ERM) methodologies considering different operation strategies and the existence of new management players such as several types of aggregators. This paper proposes a methodology to facilitate the coalition between distributed generation units originating Virtual Power Players (VPP) considering a game theory approach. The proposed approach consists in the analysis of the classifications that were attributed by each VPP to the distributed generation units, as well as in the analysis of the previous established contracts by each player. The proposed classification model is based in fourteen parameters including technical, economical and behavioural ones. Depending of the VPP strategies, size and goals, each parameter has different importance. VPP can also manage other type of energy resources, like storage units, electric vehicles, demand response programs or even parts of the MV and LV distribution network. A case study with twelve VPPs with different characteristics and one hundred and fifty real distributed generation units is included in the paper.
- A Communication and Resources Management Scheme to Support the Smart Grid Integration of Multiplayers Access to Resources InformationPublication . Vale, Zita; Morais, Hugo; Faria, Pedro; Ramos, CarlosThe increasing and intensive integration of distributed energy resources into distribution systems requires adequate methodologies to ensure a secure operation according to the smart grid paradigm. In this context, SCADA (Supervisory Control and Data Acquisition) systems are an essential infrastructure. This paper presents a conceptual design of a communication and resources management scheme based on an intelligent SCADA with a decentralized, flexible, and intelligent approach, adaptive to the context (context awareness). The methodology is used to support the energy resource management considering all the involved costs, power flows, and electricity prices leading to the network reconfiguration. The methodology also addresses the definition of the information access permissions of each player to each resource. The paper includes a 33-bus network used in a case study that considers an intensive use of distributed energy resources in five distinct implemented operation contexts.
- Contextual Intelligent Load Management Considering Real-Time Pricing in a Smart Grid EnvironmentPublication . Gomes, Luis; Fernandes, Filipe; Faria, Pedro; Vale, Zita; Ramos, Carlos; Morais, HugoThe use of demand response programs enables the adequate use of resources of small and medium players, bringing high benefits to the smart grid, and increasing its efficiency. One of the difficulties to proceed with this paradigm is the lack of intelligence in the management of small and medium size players. In order to make demand response programs a feasible solution, it is essential that small and medium players have an efficient energy management and a fair optimization mechanism to decrease the consumption without heavy loss of comfort, making it acceptable for the users. This paper addresses the application of real-time pricing in a house that uses an intelligent optimization module involving artificial neural networks.
- Cost Allocation Model for Distribution Networks Considering High Penetration of Distributed Energy ResourcesPublication . Soares, Tiago; Pereira, Fábio; Morais, Hugo; Vale, ZitaThe high penetration of distributed energy resources (DER) in distribution networks and the competitiveenvironment of electricity markets impose the use of new approaches in several domains. The networkcost allocation, traditionally used in transmission networks, should be adapted and used in the distribu-tion networks considering the specifications of the connected resources. The main goal is to develop afairer methodology trying to distribute the distribution network use costs to all players which are usingthe network in each period. In this paper, a model considering different type of costs (fixed, losses, andcongestion costs) is proposed comprising the use of a large set of DER, namely distributed generation(DG), demand response (DR) of direct load control type, energy storage systems (ESS), and electric vehi-cles with capability of discharging energy to the network, which is known as vehicle-to-grid (V2G). Theproposed model includes three distinct phases of operation. The first phase of the model consists in aneconomic dispatch based on an AC optimal power flow (AC-OPF); in the second phase Kirschen’s andBialek’s tracing algorithms are used and compared to evaluate the impact of each resource in the net-work. Finally, the MW-mile method is used in the third phase of the proposed model. A distributionnetwork of 33 buses with large penetration of DER is used to illustrate the application of the proposedmodel.
- Data Extraction Tool to Analyse, Transform and Store Real Data from Electricity MarketsPublication . Pereira, Ivo; Sousa, Tiago; Praça, Isabel; Freitas, Ana; Pinto, Tiago; Vale, Zita; Morais, HugoThe study of electricity markets operation has been gaining an increasing importance in the last years, as result of the new challenges that the restructuring process produced. Currently, lots of information concerning electricity markets is available, as market operators provide, after a period of confidentiality, data regarding market proposals and transactions. These data can be used as source of knowledge to define realistic scenarios, which are essential for understanding and forecast electricity markets behavior. The development of tools able to extract, transform, store and dynamically update data, is of great importance to go a step further into the comprehension of electricity markets and of the behaviour of the involved entities. In this paper an adaptable tool capable of downloading, parsing and storing data from market operators’ websites is presented, assuring constant updating and reliability of the stored data.