Browsing by Author "Fotouhi, Hossein"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- Demo abstract: RadiaLE: a framework for benchmarking link quality estimatorsPublication . Baccour, Nouha; Jamâa, Maissa Ben; Rosário, Denis do; Koubâa, Anis; Alves, Mário; Becker, Leandro B.; Youssef, Habib; Fotouhi, HosseinLink quality estimation is a fundamental building block for the design of several different mechanisms and protocols in wireless sensor networks (WSN). A thorough experimental evaluation of link quality estimators (LQEs) is thus mandatory. Several WSN experimental testbeds have been designed ([1–4]) but only [3] and [2] targeted link quality measurements. However, these were exploited for analyzing low-power links characteristics rather than the performance of LQEs. Despite its importance, the experimental performance evaluation of LQEs remains an open problem, mainly due to the difficulty to provide a quantitative evaluation of their accuracy. This motivated us to build a benchmarking testbed for LQE - RadiaLE, which we present here as a demo. It includes (i.) hardware components that represent the WSN under test and (ii.) a software tool for the set up and control of the experiments and also for analyzing the collected data, allowing for LQEs evaluation.
- mRPL+: A mobility management framework in RPL/6LoWPANPublication . Fotouhi, Hossein; Moreira, Daniel; Alves, Mário; Yomsi, Patrick YomsiThe next generation Internet (also known as Internet-of-Things – IoT), will ubiquitously integrate trillions of computing devices of all kinds, shapes and sizes. For this ubiquity to materialize, a key aspect will certainly be interoperability, the capability of different technologies (e.g. different communication protocols at both horizontal and vertical levels, different hardware platforms, different operating systems, fixed and mobile nodes, etc) to talk to and understand each other. A major enabler for this interoperability is the use of standard and commercial-off-the-shelf technologies (e.g. communication protocols, hardware platforms, operating systems). As IPv6 has become the de-facto communication technology for the Internet, 6LoWPAN has recently started paving the way for extending the Internet to low-power low-cost wireless devices. However, while mobility support will be a requirement (or at least beneficial) in many applications contexts, the support of mobile nodes in the default 6loWPAN/RPL protocol leads to excessive packet loss and delays. In this work, we show that interoperability between fixed and mobile nodes can be successfully achieved through the use of appropriate hand-off and topology management techniques. We propose a mobility management framework (dubbed mRPL+) unifying two hand-off models: (1) hard hand-off, where a mobile node has to break a link before finding a new link, and (2) soft hand-off , where a mobile node selects the new link before disconnecting from the current one. Importantly, mRPL+ is integrated in the 6LoWPAN/RPL stack in a backward compatible manner. Simulation results indicate that in a network with mobile nodes, packet delivery ratio with mRPL+ is nearly 100%, where RPL achieves 80% in best-case. Hand-off process has a disconnected period of few milliseconds (hand-off delay = 4 ms), while RPL experiences few seconds of disconnection during node’s mobility (3−10 s).
- mRPL: Boosting mobility in the Internet of ThingsPublication . Fotouhi, Hossein; Moreira, Daniel; Alves, MárioThe 6loWPAN (the light version of IPv6) and RPL (routing protocol for low-power and lossy links) protocols have become de facto standards for the Internet of Things (IoT). In this paper, we show that the two native algorithms that handle changes in network topology – the Trickle and Neighbor Discovery algorithms – behave in a reactive fashion and thus are not prepared for the dynamics inherent to nodes mobility. Many emerging and upcoming IoT application scenarios are expected to impose real-time and reliable mobile data collection, which are not compatible with the long message latency, high packet loss and high overhead exhibited by the native RPL/6loWPAN protocols. To solve this problem, we integrate a proactive hand-off mechanism (dubbed smart-HOP) within RPL, which is very simple, effective and backward compatible with the standard protocol. We show that this add-on halves the packet loss and reduces the hand-off delay dramatically to one tenth of a second, upon nodes’ mobility, with a sub-percent overhead. The smart-HOP algorithm has been implemented and integrated in the Contiki 6LoWPAN/RPL stack (source-code available on-line mrpl: smart-hop within rpl, 2014) and validated through extensive simulation and experimentation.
- On a reliable handoff procedure for supporting mobility in wireless sensor networksPublication . Fotouhi, Hossein; Alves, Mário; Koubâa, Anis; Baccour, NouhaWireless sensor network (WSN) applications such as patients’ health monitoring in hospitals, location-aware ambient intelligence, industrial monitoring /maintenance or homeland security require the support of mobile nodes or node groups. In many of these applications, the lack of network connectivity is not admissible or should at least be time bounded, i.e. mobile nodes cannot be disconnected from the rest of the WSN for an undefined period of time. In this context, we aim at reliable and real-time mobility support in WSNs, for which appropriate handoff and rerouting decisions are mandatory. This paper1 drafts a mechanism and correspondent heuristics for taking reliable handoff decisions in WSNs. Fuzzy logic is used to incorporate the inherent imprecision and uncertainty of the physical quantities at stake.
- Poster abstract: Smart-HOP: a reliable handoff procedure for supporting mobility in wireless sensor networksPublication . Fotouhi, Hossein; Alves, Mário; Koubâa, Anis; Zúñiga, MarcoThis poster abstract presents smart-HOP, a reliable handoff mechanism for mobility support in Wireless Sensor Networks (WSNs). This technique relies on a fuzzy logic approach applied at two levels: the link quality estimation level and the access point selection level. We present the conceptual design of smart-HOP and then we discuss implementation requirements and challenges.
- Reliable and Fast Hand-Offs in Low-Power Wireless NetworksPublication . Fotouhi, Hossein; Alves, Mário; Zamalloa, Marco Zuniga; Koubâa, AnisHand-off (or hand-over), the process where mobile nodes select the best access point available to transfer data, has been well studied in wireless networks. The performance of a hand-off process depends on the specific characteristics of the wireless links. In the case of low-power wireless networks, hand-off decisions must be carefully taken by considering the unique properties of inexpensive low-power radios. This paper addresses the design, implementation and evaluation of smart-HOP, a hand-off mechanism tailored for low-power wireless networks. This work has three main contributions. First, it formulates the hard hand-off process for low-power networks (such as typical wireless sensor networks - WSNs) with a probabilistic model, to investigate the impact of the most relevant channel parameters through an analytical approach. Second, it confirms the probabilistic model through simulation and further elaborates on the impact of several hand-off parameters. Third, it fine-tunes the most relevant hand-off parameters via an extended set of experiments, in a realistic experimental scenario. The evaluation shows that smart-HOP performs well in the transitional region while achieving more than 98 percent relative delivery ratio and hand-off delays in the order of a few tens of a milliseconds.
- Smart-HOP: a reliable handoff mechanism for mobile wireless sensor networksPublication . Fotouhi, Hossein; Zúñiga, Marco; Alves, Mário; Koubâa, Anis; Marrón, PedroHandoff processes, the events where mobile nodes select the best access point available to transfer data, have been well studied in cellular and WiFi networks. However, wireless sensor networks (WSN) pose a new set of challenges due to their simple low-power radio transceivers and constrained resources. This paper proposes smart-HOP, a handoff mechanism tailored for mobile WSN applications. This work provides two important contributions. First, it demonstrates the intrinsic relationship between handoffs and the transitional region. The evaluation shows that handoffs perform the best when operating in the transitional region, as opposed to operating in the more reliable connected region. Second, the results reveal that a proper fine tuning of the parameters, in the transitional region, can reduce handoff delays by two orders of magnitude, from seconds to tens of milliseconds.