Browsing by Author "Carvalho, Fernando Aécio A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- In Silico, In Vitro and In Vivo Toxicological Assessment of BPP-BrachyNH2, A Vasoactive Proline-Rich Oligopeptide from Brachycephalus ephippiumPublication . Arcanjo, Daniel D. R.; Mafud, Ana Carolina; Vasconcelos, Andreanne G.; Silva-Filho, José Couras da; Amaral, Maurício P. M.; Brito, Lucas M.; Bemquerer, Marcelo P.; Kückelhaus, Selma A. S.; Plácido, Alexandra; Delerue-Matos, Cristina; Vale, Nuno; Mascarenhas, Yvonne P.; Carvalho, Fernando Aécio A.; Oliveira, Aldeidia P.; Leite, José Roberto Souza AlmeidaBPP-BrachyNH2 is a proline-rich oligopeptide (PRO) firstly identified in skin secretion of the frog Brachycephalus ephippium, which possess in vitro inhibitory activity of angiotensin-I converting enzyme (ACE) and endothelium-dependent vasorelaxant activity. Considering its potential application in the treatment of cardiovascular diseases, the present work assessed the toxicological profile of the BPP-BrachyNH2. The in silico toxicity prediction was performed from the best model obtained through the optimization of the FASTA query peptide. This prediction study revealed that BPP-BrachyNH2 induced high predicted LD50 values for both humans and rats, and then is well-tolerated in the recommended range. The MTT assay was applied for the in vitro cytotoxic evaluation in murine macrophages. In this assay, a decrease of cell viability was not observed. The in vivo acute toxicological study was performed after the intraperitoneal administration of BPP-BrachyNH2 at doses of 5 and 50 mg/kg. After intraperitoneal administration, no death, alterations in behavioral parameters or weight gain curve was observed, as well as none in the serum biochemical parameters, and gross pathological and histopathological analyses. These observations demonstrates an acceptable safety profile for BPP-BrachyNH2, leading towards further studies focused on investigation of pharmacological and therapeutical applications for this peptide.
- Structure-function studies of BPP-BrachyNH 2 and synthetic analogues thereof with Angiotensin I-Converting EnzymePublication . Arcanjo, Daniel D.R.; Vasconcelos, Andreanne G.; Nascimento, Lucas A.; Mafud, Ana Carolina; Plácido, Alexandra; Alves, Michel M.M.; Delerue-Matos, Cristina; Bemquerer, Marcelo P.; Vale, Nuno; Gomes, Paula; Oliveira, Eduardo B.; Lima, Francisco C.A.; Mascarenhas, Yvonne P.; Carvalho, Fernando Aécio A.; Simonsen, Ulf; Ramos, Ricardo M.; Leite, José Roberto S.A.The vasoactive proline-rich oligopeptide termed BPP-BrachyNH2 (H-WPPPKVSP-NH2) induces in vitro inhibitory activity of angiotensin I-converting enzyme (ACE) in rat blood serum. In the present study, the removal of N-terminal tryptophan or C-terminal proline from BPP-BrachyNH2 was investigated in order to predict which structural components are important or required for interaction with ACE. Furthermore, the toxicological profile was assessed by in silico prediction and in vitro MTT assay. Two BPP-BrachyNH2 analogues (des-Trp1-BPP-BrachyNH2 and des-Pro8-BPP-BrachyNH2) were synthesized, and in vitro and in silico ACE inhibitory activity and toxicological profile were assessed. The des-Trp1-BPP-BrachyNH2 and des-Pro8-BPP-BrachyNH2 were respectively 3.2- and 29.5-fold less active than the BPP-BrachyNH2-induced ACE inhibitory activity. Molecular Dynamic and Molecular Mechanics Poisson-Boltzmann Surface Area simulations (MM-PBSA) demonstrated that the ACE/BBP-BrachyNH2 complex showed lower binding and van der Wall energies than the ACE/des-Pro8-BPP-BrachyNH2 complex, therefore having better stability. The removal of the N-terminal tryptophan increased the in silico predicted toxicological effects and cytotoxicity when compared with BPP-BrachyNH2 or des-Pro8-BPP-BrachyNH2. Otherwise, des-Pro8-BPP-BrachyNH2 was 190-fold less cytotoxic than BPP-BrachyNH2. Thus, the removal of C-terminal proline residue was able to markedly decrease both the BPP-BrachyNH2-induced ACE inhibitory and cytotoxic effects assessed by in vitro and in silico approaches. In conclusion, the aminoacid sequence of BPP-BrachyNH2 is essential for its ACE inhibitory activity and associated with an acceptable toxicological profile. The perspective of the interactions of BPP-BrachyNH2 with ACE found in the present study can be used for development of drugs with differential therapeutic profile than current ACE inhibitors.