Browsing by Author "Barata, Pedro"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
- Cannabidiol and terpene formulation reducing SARS-CoV-2 infectivity tackling a therapeutic strategyPublication . Santos, Susana; Barata, Pedro; Charmier, Adilia; Lehmann, Inês; Rodrigues, Suzilaine; Melosini, Matteo M.; Pais, Patrick J.; Sousa, André P.; Teixeira, Catarina; Santos, Inês; Rocha, Ana Catarina; Baylina, Pilar; Fernandes, RubenIn late 2019, COVID-19 emerged in Wuhan, China. Currently, it is an ongoing global health threat stressing the need for therapeutic compounds. Linking the virus life cycle and its interaction with cell receptors and internal cellular machinery is key to developing therapies based on the control of infectivity and inflammation. In this framework, we evaluate the combination of cannabidiol (CBD), as an anti-inflammatory molecule, and terpenes, by their anti-microbiological properties, in reducing SARS-CoV-2 infectivity. Our group settled six formulations combining CBD and terpenes purified from Cannabis sativa L, Origanum vulgare, and Thymus mastichina. The formulations were analyzed by HPLC and GC-MS and evaluated for virucide and antiviral potential by in vitro studies in alveolar basal epithelial, colon, kidney, and keratinocyte human cell lines.
- Current trends and challenges of fecal microbiota transplantation—An easy method that works for all?Publication . Almeida, Cátia; Oliveira, Rita; Baylina, Pilar; Fernandes, Rúben; Teixeira, Fábio G.; Barata, PedroThe gut microbiota refers to bacteria lodges in the gastrointestinal tract (GIT) that interact through various complex mechanisms. The disturbance of this ecosystem has been correlated with several diseases, such as neurologic, respiratory, cardiovascular, and metabolic diseases and cancer. Therefore, the modulation of the gut microbiota has emerged as a potential therapeutic tool; of the various forms of gut microbiota modulation, fecal microbiota transplantation (FMT) is the most approached. This recent technique involves introducing fecal material from a healthy donor into the patient’s gastrointestinal tract, aiming to restore the gut microbiota and lead to the resolution of symptoms. This procedure implies a careful donor choice, fine collection and handling of fecal material, and a balanced preparation of the recipient and consequent administration of the prepared content. Although FMT is considered a biological therapy with promising effects, side effects such as diarrhea and abdominal pain have also been claimed, making this a significant challenge in the application of FMT. Bearing this in mind, the present review aims to summarize the recent advances in understanding FMT mechanisms, their impact across different pathological conditions, and the associated side effects, emphasizing the most recent published data.
- Enhanced 3T3-L1 differentiation into adipocytes by pioglitazone pharmacological activation of peroxisome proliferator activated receptor-gamma (PPAR-gamma)Publication . Teixeira, Catarina; Sousa, André P.; Santos, Inês; Rocha, Ana Catarina; Alencastre, Inês; Pereira, Ana Cláudia; Martins-Mendes, Daniela; Barata, Pedro; Baylina, Pilar; Fernandes, RúbenDespite the primary function of pioglitazone in antidiabetic treatment, this drug is a potent inducer of PPAR-γ, a crucial receptor that is involved in adipocyte differentiation. In this work, we propose an optimized methodology to enhance the differentiation of 3T3-L1 fibroblasts into adipocytes. This process is crucial for adipocyte secretome release, which is fundamental for understanding the molecular mechanisms that are involved in obesity for in vitro studies. To achieve this, a pioglitazone dose-response assay was determined over a range varying from 0 to 10 µM. Lipid accumulation was evaluated using Oil-Red-O. The results showed that 10 µM pioglitazone enhanced differentiation and increased secretome production. This secretome was then added into two cell lines: PC3 and RAW264.7. In the PC3 cells, an increase of aggressiveness was observed in terms of viability and proliferation, with the increase of anti-inflammatory cytokines. Conversely, in RAW264.7 cells, a reduction of viability and proliferation was observed, with a decrease in the overexpression of pro-inflammatory cytokines. Overall, the present work constitutes an improved method for adipocyte secretome production that is suitable for experimental biology studies and that could help with our understanding of the molecular mechanisms underlying adiposity influence in other cells.
- Harvesting the power of green synthesis: gold nanoparticles tailored for prostate cancer therapyPublication . Oliveira, Marco; Sousa, André; Sá, Sara; Soares, Sílvia; Pereira, Ana Cláudia; Rocha, Ana Catarina; Pais, Patrick; Ferreira, Diogo; Almeida, Cátia; Luís, Carla; Lima, Cláudio; Almeida, Fábio; Gestoso, Álvaro; Duarte, Miguel-Correa; Barata, Pedro; Martins-Mendes, Daniela; Baylina, Pilar; Pereira, Carla F.; Fernandes, RúbenBiosynthetic gold nanoparticles (bAuNPs) present a promising avenue for enhancing biocompatibility and offering an economically and environmentally responsible alternative to traditional production methods, achieved through a reduction in the use of hazardous chemicals. While the potential of bAuNPs as anticancer agents has been explored, there is a limited body of research focusing on the crucial physicochemical conditions influencing bAuNP production. In this study, we aim to identify the optimal growth phase of Pseudomonas aeruginosa cultures that maximizes the redox potential and coordinates the formation of bAuNPs with increased efficiency. The investigation employs 2,6-dichlorophenolindophenol (DCIP) as a redox indicator. Simultaneously, we explore the impact of temperature, pH, and incubation duration on the biosynthesis of bAuNPs, with a specific emphasis on their potential application as antitumor agents. Characterization of the resulting bAuNPs is conducted using ATR-FT-IR, TEM, and UV-Vis spectroscopy. To gain insights into the anticancer potential of bAuNPs, an experimental model is employed, utilizing both non-neoplastic (HPEpiC) and neoplastic (PC3) epithelial cell lines. Notably, P. aeruginosa cultures at 9 h/OD600 = 1, combined with biosynthesis at pH 9.0 for 24 h at 58 ◦C, produce bAuNPs that exhibit smaller, more spherical, and less aggregated characteristics. Crucially, these nanoparticles demonstrate negligible effects on HPEpiC cells while significantly impacting PC3 cells, resulting in reduced viability, migration, and lower IL-6 levels. This research lays the groundwork for the development of more specialized, economical, and ecologically friendly treatment modalities.
- Ionizing radiation from radiopharmaceuticals and the human gut microbiota: An ex vivo approachPublication . Fernandes, Ana; Oliveira, Ana; Guedes, Carla; Fernandes, Rúben; Soares, Raquel; Barata, PedroThis study aimed to determine the effect of three widely used radiopharmaceuticals with intestinal excretion on selected relevant bacteria that are part of the human gut microbiota, using an ex vivo approach. Fecal samples obtained from healthy volunteers were analyzed. Each sample was divided into four smaller aliquots. One served as the non-irradiated control. The other three were homogenized with three radiopharmaceutical solutions ([131I]NaI, [99mTc]NaTcO4, and [223Ra]RaCl2). Relative quantification of each taxa was determined by the 2−ΔΔC method, using the ribosomal gene 16S as an internal control (primers 534/385). Twelve fecal samples were analysed: three controls and nine irradiated. Our experiment showed fold changes in all analyzed taxa with all radiopharmaceuticals, but results were more significant with I-131, ranging from 1.87–83.58; whereas no relevant differences were found with Tc-99m and Ra-223, ranging from 0.98–1.58 and 0.83–1.97, respectively. This study corroborates limited existing research on how ionizing radiation changes the gut microbiota composition, providing novel data regarding the ex vivo effect of radiopharmaceuticals. Our findings justify the need for future larger scale projects.
- Moving towards personalized medicine—The broad use of aptamers for targeted theranosticPublication . Sousa, André P.; Rocha, Ana C.; Almeida, Cátia; Carneiro, Mariana C. C. G.; Pais, Patrick P.; Viana, Rejane; Fernandes, Rúben; Barata, Pedro; Gestoso, Álvaro; Ramalho, Susana; Martins-Mendes, Daniela; Baylina, Pilar; Pereira, Ana CláudiaAptamers are short, single-stranded oligonucleotides synthesized in vitro from a randomized oligonucleotide library against a specific target. These molecules are capable of binding to a wide range of biological targets with high specificity and affinity. They present great advantages over antibodies with potential applications in research, diagnosis, and therapeutics. Specifically for tumors with late-stage identification and poor prognosis, like pancreatic cancer, the study of novel aptamers holds tremendous potential for cancer diagnosis and treatment. Along with cancer treatment, aptamers have also shown high potential in regulating the immune response and modulating several critical steps of signaling cascades, such as in immune checkpoints. In the context of microbiota and infection, aptamers are being studied to identify microbes and their metabolites. This assessment has the potential to improve the detection and management of infectious diseases while assisting us in better understanding health risks and treatment outcomes by tracking changes in the microbiota. In this review, the potential of aptamers is explored regarding their applications in cancer, immune, and microbiota therapy.
- New CTX-M group conferring β-Lactam resistance: A compendium of phylogenetic insights from biochemical, molecular, and structural biologyPublication . Mendonça, Jacinta; Guedes, Carla; Silva, Carina; Sá, Sara; Oliveira, Marco; Accioly, Gustavo; Baylina, Pilar; Barata, Pedro; Pereira, Cláudia; Fernandes, RubenThe production of extended-spectrum β-lactamases (ESBLs) is the main defense mechanism found in Gram negative bacteria. Among all the ESBLs, the CTX-M enzymes appear as the most efficient in terms of dissemination in different epidemiological contexts. CTX-M enzymes exhibit a striking plasticity, with a large number of allelic variants distributed in several sublineages, which can be associated with functional heterogeneity of clinical relevance. This observational analytical study provides an update of this family, currently with more than 200 variants described, from a phylogenetic, molecular, and structural point of view through homology in amino acid sequences. Our data, combined with described literature, provide phylogenetic and structural evidence of a new group. Thus, herein, we propose six groups among CTX-M enzymes: the already stablished CTX-M-1, CTX-M-2, CTX-M-8, CTX-M-9, and CTX-M-25 clusters, as well as CTX-M-151 as the new cluster.
- The influence of gut microbiota in cardiovascular diseases—a brief reviewPublication . Almeida, Cátia; Barata, Pedro; Fernandes, RúbenLately, the gut microbiota has emerged as an important mediator of the development and the outcomes of certain diseases. It's well known that the gut microbiota plays an important role in maintaining human health. Still far from being completely understood and analyzed is the complexity of this ecosystem, although a close relationship between the gut microbiota and cardiovascular diseases (CVD) has been established. A loss of diversity in the microbiota will lead to physiological changes, which can improve inflammatory or infection states like atherosclerosis and hypertension, the basic pathological process of CVD. Targeting the gut microbiota and its metabolites are new and promising strategies for the treatment and prognosis of CVD.