Name: | Description: | Size: | Format: | |
---|---|---|---|---|
7.48 MB | Adobe PDF |
Abstract(s)
Os sistemas de recomendação (SR) têm desempenhado um papel importante em várias áreas,
permitindo aos utilizadores tomar decisões mais informadas e uma das áreas que mais tem
beneficiado com o crescimento destes sistemas, é a área do turismo. No entanto, a grande
parte destes sistemas não têm em consideração uma vertente importante: os interesses dos
visitantes e o contexto envolvente, que são potencializadores de uma experiência mais
enriquecedora e personalizada.
Neste contexto, é fundamental considerar aspetos como o clima, a personalidade do
utilizador, bem como os seus medos e limitações. Estes elementos têm o potencial de
melhorar a forma como as recomendações são feitas. Ao melhorar o motor de
recomendações, é possível criar sugestões que tenham em conta o contexto meteorológico,
adaptando-se às condições atuais, e que também considerem a personalidade e as limitações
dos utilizadores.
No presente documento, é apresentada uma extensa revisão de literatura, uma análise e
desenho da solução, detalhes sobre a implementação da solução e, por fim, uma avaliação e
análise dos resultados obtidos.
A solução implementada, que se centrou na inclusão do contexto onde o utilizador se
encontra inserido, permitiu que o SR a ser desenvolvido evoluísse, assegurando
recomendações que estão mais de acordo com a personalidade, as preocupações e as
limitações do utilizador.
Recommendation systems (RS) have played an important role in various areas, allowing users to make more informed decisions and one of the areas that has benefited most from the growth of these systems is tourism. However, most of these systems do not consider an important aspect: the interests of visitors and the surrounding context, which can enhance a more enriching and personalized experience. In this context, it is essential to consider aspects such as the climate, the user's personality, as well as their fears and limitations. These elements have the potential to improve the way recommendations are made. By improving the recommendation engine, it is possible to create suggestions that consider the weather context, adapting to current conditions, and that also consider users' personalities and limitations. This document presents an extensive literature review, an analysis and design of the solution, details on the implementation of the solution and, finally, an evaluation and analysis of the results obtained. The solution implemented, which focused on including the context in which the user is located, allowed the SR being developed to evolve, ensuring recommendations that are more in line with the user's personality, concerns, and limitations.
Recommendation systems (RS) have played an important role in various areas, allowing users to make more informed decisions and one of the areas that has benefited most from the growth of these systems is tourism. However, most of these systems do not consider an important aspect: the interests of visitors and the surrounding context, which can enhance a more enriching and personalized experience. In this context, it is essential to consider aspects such as the climate, the user's personality, as well as their fears and limitations. These elements have the potential to improve the way recommendations are made. By improving the recommendation engine, it is possible to create suggestions that consider the weather context, adapting to current conditions, and that also consider users' personalities and limitations. This document presents an extensive literature review, an analysis and design of the solution, details on the implementation of the solution and, finally, an evaluation and analysis of the results obtained. The solution implemented, which focused on including the context in which the user is located, allowed the SR being developed to evolve, ensuring recommendations that are more in line with the user's personality, concerns, and limitations.
Description
Keywords
Context Recommendation Systems Recommendation Systems for Groups Recommendation Systems in Tourism Virtual Pet Meteorology Personality Limitations