Name: | Description: | Size: | Format: | |
---|---|---|---|---|
5.07 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
Os projetos de centrais de produção de hidrogénio verde apresentam grandes desafios nos mais
variados setores, como a nível político, económico e, principalmente, de engenharia. O facto destas
centrais terem que utilizar apenas fontes de energia renovável - que, conceptualmente,
representam intermitência no fornecimento de energia elétrica - e do desenvolvimento tecnológico
ter que acompanhar as capacidades inéditas a nível de produção de hidrogénio demonstra
complexidades que têm que ser cuidadosamente analisadas em estudos de viabilidade. Assim, a
integração de todos sistemas necessários à produção de H2 verde é um desafio a ser superado. O
presente trabalho teve o objetivo principal de desenvolver um modelo numérico para estudar o
projeto e operação de centrais de produção de hidrogénio verde, garantindo a possibilidade de,
eficientemente, alterar a configuração de diversos inputs e criar cenários de análise. Estes servirão
como elementos críticos para a tomada de decisão por parte dos promotores. Como exemplo da
aplicação da ferramenta foi desenhada uma central de produção de hidrogénio verde com um
sistema de eletrólise do tipo PEM cuja capacidade de eletrólise foi fixada em 100 MW, com recurso
a energia de uma central fotovoltaica (300 MW), complementada ou não, com energia elétrica
proveniente da rede. Para além disso, fazem parte da simulação o sistema de compressão, os
sistemas de armazenamento de H2 com pressões e capacidades distintas, além de dois off-takers
específicos, um deles associado à rede de distribuição de gás natural (P2G) e outro à mobilidade de
veículos pesados (P2M). A ferramenta permitiu observar a produção de hidrogénio para um espaço
temporal de 20 anos. Adicionalmente, procedeu-se à determinação do potencial calor residual
produzido pelo sistema de eletrólise, com o intuito de aumentar a eficiência energética, valorizando
ao máximo os subprodutos gerados. Quanto à operação, foi possível determinar quando deveria
ocorrer a troca de membranas condutoras de protões, o nível de enchimento dos sistemas de
armazenamento de hidrogénio ao longo do tempo e, a partir de indicadores económicos relativos
aos investimentos iniciais e à operação da central (CAPEX e OPEX), foi estimado o custo de produção
normalizado do hidrogénio produzido - LCOH2 - para as simulações realizadas. Para o caso estudado
validou-se o impacto significativo do preço da energia elétrica no custo final do hidrogénio
produzido. De modo geral, é possível concluir que a ferramenta desenvolvida e testada poderá
contribuir de maneira ativa para análises de viabilidade, de forma expedita, apresentando a grande
vantagem de garantir flexibilidade para alterar as configurações que se desejem estudar. Por fim,
refere-se ainda que o modelo base gerado poderá ser expandido e integrado com outros módulos,
garantindo-se assim uma análise cada vez mais completa e que se aproxime da realidade.
Projects for green hydrogen production plants represent major challenges in various sectors, such as political, economic and, above all, engineering. The fact that these plants have to use only renewable energy sources - which conceptually represent intermittency in electricity supply - and that technological development has to accompany the unprecedented capabilities in hydrogen production demonstrates complexities that have to be carefully analysed in feasibility studies. Thus, the integration of all systems required for the production of green H2 is a challenge to be overcome. The present work had the main objective of developing a numerical model to study the design and operation of green hydrogen production plants, ensuring the possibility to efficiently change the configuration of several inputs and create analysis scenarios. These will serve as critical elements for decision making by developers. As an example of the tool's application, a green hydrogen production plant was designed with a PEM type electrolysis system whose capacity was set at 100 MW, using energy from a photovoltaic plant (300 MW), complemented or not, with electrical energy from the grid. Furthermore, the compression system, the H2 storage systems with different pressures and capacities, as well as two specific off-takers, one of them associated with the natural gas distribution network (P2G) and the other with the mobility of heavy vehicles (P2M), are part of the simulation. The tool allowed for the observation of hydrogen production for a time span of 20 years. Additionally, the residual heat produced by the electrolysis system was determined, in order to increase the energy efficiency, valuing the generated by-products to the maximum. As regards operation, it was possible to determine when proton exchange membranes should occur, the filling level of hydrogen storage systems over time and, from economic indicators relating to initial investment and plant operation (CAPEX and OPEX), the levelized production cost of the hydrogen produced - LCOH2 - was estimated for the simulations performed. For the studied case, the significant impact of the electric energy price on the final cost of the produced hydrogen was validated. In general, it is possible to conclude that the developed and tested tool can contribute actively to feasibility analyses in an expedite way, presenting the great advantage of guaranteeing flexibility to change the configurations to be studied. Finally, it is also mentioned that the generated base model can be expanded and integrated with other modules, guaranteeing a more complete and closer to reality analysis.
Projects for green hydrogen production plants represent major challenges in various sectors, such as political, economic and, above all, engineering. The fact that these plants have to use only renewable energy sources - which conceptually represent intermittency in electricity supply - and that technological development has to accompany the unprecedented capabilities in hydrogen production demonstrates complexities that have to be carefully analysed in feasibility studies. Thus, the integration of all systems required for the production of green H2 is a challenge to be overcome. The present work had the main objective of developing a numerical model to study the design and operation of green hydrogen production plants, ensuring the possibility to efficiently change the configuration of several inputs and create analysis scenarios. These will serve as critical elements for decision making by developers. As an example of the tool's application, a green hydrogen production plant was designed with a PEM type electrolysis system whose capacity was set at 100 MW, using energy from a photovoltaic plant (300 MW), complemented or not, with electrical energy from the grid. Furthermore, the compression system, the H2 storage systems with different pressures and capacities, as well as two specific off-takers, one of them associated with the natural gas distribution network (P2G) and the other with the mobility of heavy vehicles (P2M), are part of the simulation. The tool allowed for the observation of hydrogen production for a time span of 20 years. Additionally, the residual heat produced by the electrolysis system was determined, in order to increase the energy efficiency, valuing the generated by-products to the maximum. As regards operation, it was possible to determine when proton exchange membranes should occur, the filling level of hydrogen storage systems over time and, from economic indicators relating to initial investment and plant operation (CAPEX and OPEX), the levelized production cost of the hydrogen produced - LCOH2 - was estimated for the simulations performed. For the studied case, the significant impact of the electric energy price on the final cost of the produced hydrogen was validated. In general, it is possible to conclude that the developed and tested tool can contribute actively to feasibility analyses in an expedite way, presenting the great advantage of guaranteeing flexibility to change the configurations to be studied. Finally, it is also mentioned that the generated base model can be expanded and integrated with other modules, guaranteeing a more complete and closer to reality analysis.
Description
Keywords
Simulação numérica Eletrolisador PEM Energia Renovável LCOH