Repository logo
 
Publication

A data mining tool for untargeted biomarkers analysis: Grapes ripening application

dc.contributor.authorMachado, Sandia
dc.contributor.authorBarreiros, Luisa
dc.contributor.authorGraça, António R.
dc.contributor.authorPáscoa, Ricardo N.M.J.
dc.contributor.authorSegundo, Marcela A.
dc.contributor.authorLopes, João A.
dc.date.accessioned2023-04-12T15:19:26Z
dc.date.available2023-04-12T15:19:26Z
dc.date.issued2023-02-15
dc.description.abstractIn metabolomics, data generated by untargeted approaches can be very complex due to the typically extensive number of features in raw data (with and without chemical relevance), dependence on raw data preprocessing methods, and lack of selective data mining tools to appropriately interpret these data. Extraction of meaningful information from these data is still a significant challenge in metabolomics. Moreover, currently available tools may overprocess the data, eliminating useful information. This work aims at proposing a data mining tool capable of dealing with metabolomics data, specifically liquid chromatography-mass spectrometry (LC-MS) to enhance the extraction of meaningful chemical information. The algorithm construction intended to be as general as possible in highlighting chemically relevant features, discarding non-informative signals specially background features. The proposed algorithm was applied to an LC-MS data set generated from the analysis of grapes collected over a developmental period encompassing a 4-month period. The algorithm outcome is a short list of features from metabolites that are worth to be further investigated, for example by HRMS fragmentation for subsequent identification. The performance of the algorithm in estimating potentially interesting features was compared with the commercial MZmine software. For this case study, the MZmine output yielded a final set of 37 features (out of 1543 initially identified) with noise features while the proposed algorithm identified 99 systematic features without noise. Also, the algorithm required 2 times less user-defined parameters when compared to MZmine. Globally, the proposed algorithm demonstrated a higher ability to pin-point features that may be associated with grapes developmental and maturation processes requiring minimal parameters definition, thus preventing user uncertainty and the compromise of experimental information.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationMachado, S., Barreiros, L., Graça, A. R., Páscoa, R. N. M. J., Segundo, M. A., & Lopes, J. A. (2023). A data mining tool for untargeted biomarkers analysis: Grapes ripening application. Chemometrics and Intelligent Laboratory Systems, 233, 104745. https://doi.org/10.1016/j.chemolab.2022.104745pt_PT
dc.identifier.doi10.1016/j.chemolab.2022.104745pt_PT
dc.identifier.eissn1873-3239
dc.identifier.issn0169-7439
dc.identifier.urihttp://hdl.handle.net/10400.22/22717
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherElsevierpt_PT
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0169743922002568pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectMetabolomicspt_PT
dc.subjectData miningpt_PT
dc.subjectUntargeted analysispt_PT
dc.subjectLC-MSpt_PT
dc.subjectGrape ripeningpt_PT
dc.titleA data mining tool for untargeted biomarkers analysis: Grapes ripening applicationpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage13pt_PT
oaire.citation.startPage1pt_PT
oaire.citation.titleChemometrics and Intelligent Laboratory Systemspt_PT
oaire.citation.volume233pt_PT
person.familyNameBarreiros
person.givenNameLuisa
person.identifier.ciencia-id611F-E0C5-0230
person.identifier.orcid0000-0003-3481-5809
person.identifier.ridD-7950-2013
person.identifier.scopus-author-id6508205485
rcaap.rightsclosedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication1e66bacc-64de-4ecb-96b7-4c0e366cba57
relation.isAuthorOfPublication.latestForDiscovery1e66bacc-64de-4ecb-96b7-4c0e366cba57

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ART_Luísa Barreiros 2.pdf
Size:
6.92 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: