Name: | Description: | Size: | Format: | |
---|---|---|---|---|
10.25 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
A articulação da anca é notável pela sua resistência e durabilidade, esta é projetada para suportar não
apenas o peso do corpo, mas também forças adicionais que ocorrem durante atividades do nosso
cotidiano. Essa capacidade de resistir a cargas repetidas ao longo da vida é essencial para a nossa
mobilidade continua. No entanto, também é importante reconhecer que nem todos têm a sorte de chegar
ao final da vida sem sofrer uma lesão ou comprometimento na articulação da anca. À medida que
envelhecemos, as articulações, incluindo a da anca, podem Osteoartrose sujeitas a desgaste ou
degeneração devido ao envelhecimento natural, lesões, doenças ou condições genéticas. Isso pode
resultar em problemas como Osteoartrose, que afetam a qualidade de vida e a mobilidade das pessoas.
Felizmente, a medicina oferece opções de tratamento para lidar com a Osteoartrose da anca. A
Artroplastia Total da Anca (ATA) é uma intervenção cirúrgica eficaz que visa restaurar a função da anca
substituindo a articulação danificada por uma prótese. Este procedimento cirúrgico é um dos mais bem sucedidos na área de ortopedia e tem transformado a vida de inúmeras pessoas, proporcionado alívio de
dor, restauração de mobilidade e melhoria significativa na qualidade de vida.
No entanto, a escolha de quando realizar uma Artroplastia Total da Anca é crucial e frequentemente
baseada na gravidade dos sintomas, na idade do paciente e em outros fatores clínicos. Além disso, a
pesquisa constante e avanços na área médica buscam aprimorar ainda mais as técnicas e materiais
utilizados nas próteses da anca, garantindo resultados cada vez mais bem-sucedidos.
Nesta investigação da ATA, abordamos a análise aprofundada do desempenho de duas próteses com os
materiais cobalto-crómio e titânio, explorando a influência do design das hastes utilizando a simulação
numérica com o software COMSOL Multiphysics. O objetivo inicial do projeto seria avaliar a visão prática
da ATA em Portugal, mas a falta de dados confiáveis de fontes oficiais representou um desafio, que nos
encaminhou para o Hospital Lusíadas do Porto (HLP). Foram partilhados dados sobre 982 artroplastias
da anca, dos anos referentes a 2007 e 2022, tendo sido identificado assim os modelos mais
frequentemente usados de hastes femorais no HLP, que incluem a haste Corail da marca Depuy J&J, bem
como as hastes Exeter e Accolade da marca Stryker. A adaptação das geometrias para realizar a simulação
3D destas hastes, revelou-se uma etapa complexa, com a necessidade de acesso a modelos mais precisos
por forma a mimetizar a realidade. A colaboração do Doutor Emílio Ruiz Reina, da Universidade de
Málaga (Espanha) e o apoio da Doutora Maria Lázaro do Instituto de Investigação e Inovação em Saúde
(I3S) foram fundamentais para o desenvolvimento da simulação.
Uma vez concluída a modelação das hastes, realizamos simulações estáticas em várias atividades diárias
(marcha, subir e descer escadas, levantar e sentar, ficar de pé numa só perna, ajoelhar). Foram obtidos
resultados gerando-se diagramas de tensão de von Mises e deslocamento para as duas hastes em todas as
atividades, nos materiais de cobalto-crómio e titânio.
No processo de simulação, geometrias, malhas e estudos foram cuidadosamente considerados para se
aproximar o mais possível de um estudo in vivo. Os resultados demonstraram que atividades comuns,
como subir e descer escadas, colocam picos mais elevados de stress nos modelos, independentemente do
material utilizado.
No entanto, é importante notar que os resultados são baseados em um estudo estático e não representam
completamente o comportamento dinâmico das próteses nas atividades diárias. Há sugestões para
estudos futuros, incluindo a realização de estudos de stress life para avaliar a fadiga das próteses ao longo
do tempo, bem como a replicação dos movimentos na articulação da anca para testes de desgaste mais realistas. No geral, este estudo contribuiu significativamente para o entendimento da biomecânica das próteses na Artroplastia Total da Anca e forneceu informações valiosas para aprimorar o desempenho clínico desses
implantes.
The hip joint is remarkable for its resilience and durability; it is designed to bear not only the body's weight, but also additional forces encountered during our daily activities. This ability to withstand repeated loads throughout one's life is essential for continuous mobility. However, it's equally important to acknowledge that not everyone is fortunate enough to reach the end of their life without experiencing hip joint injuries or impairments. As we age, our joints, including the hip joint, may be subject to wear and degeneration due to natural aging, injuries, diseases, or genetic conditions. This can lead to issues such as Osteoartrose, affecting people's quality of life and mobility. Fortunately, medical science offers treatment options for addressing hip Osteoartrose. Total Hip Arthroplasty (THA) is an effective surgical intervention aimed at restoring hip joint function by replacing the damaged joint with a prosthesis. This surgical procedure is one of the most successful in the field of orthopaedics and has significantly improved the lives of countless individuals, providing pain relief, restored mobility, and a substantial enhancement in their quality of life. Nonetheless, the decision on when to undergo Total Hip Arthroplasty is critical and is often based on the severity of symptoms, the patient's age, and other clinical factors. Furthermore, ongoing research and advances in the medical field continuously seek to further enhance the techniques and materials used in hip joint prostheses, ensuring increasingly successful outcomes. In this THA investigation, we conducted an in-depth analysis of the performance of two prostheses made of cobalt-chromium and titanium, exploring the influence of stem design using numerical simulation with COMSOL Multiphysics software. The initial goal of the project was to evaluate the practical application of THA in Portugal. However, the lack of reliable data from official sources posed a challenge, leading us to collaborate with the Lusíadas Hospital of Porto (LHP). Data on 982 hip arthroplasties from the years 2007 and 2022 were shared, identifying the most frequently used femoral stem models at LHP, including the Depuy J&J Corail stem and Stryker's Exeter and Accolade stems. Adapting the geometries for 3D simulation of these stems proved to be a complex process, necessitating access to more precise models to mimic reality. Collaboration with Dr. Emilio Ruiz Reina from the University of Málaga (Spain) and the support of Dr. Maria Lázaro from the Institute of Research and Innovation in Health (I3S) were crucial for the simulation's development. After completing the stem modelling, we conducted static simulations in various daily activities (walking, ascending and descending stairs, standing on one leg, kneeling, and sitting and standing). Results were obtained by generating von Mises stress diagrams and displacement for both stems in all activities, using cobalt-chromium and titanium materials. In the simulation process, geometries, meshes, and studies were carefully considered to closely approximate an in vivo study. The results showed that common activities like climbing and descending stairs resulted in higher stress peaks on the models, regardless of the material used. However, it is essential to note that the results are based on a static study and do not entirely represent the dynamic behaviour of prostheses during daily activities. Suggestions for future studies include conducting stress-life studies to assess prosthesis fatigue over time and replicating hip joint movements for more realistic wear tests. Overall, this study significantly contributed to understanding the biomechanics of prostheses in Total Hip Arthroplasty and provided valuable insights for improving the clinical performance of these implants.
The hip joint is remarkable for its resilience and durability; it is designed to bear not only the body's weight, but also additional forces encountered during our daily activities. This ability to withstand repeated loads throughout one's life is essential for continuous mobility. However, it's equally important to acknowledge that not everyone is fortunate enough to reach the end of their life without experiencing hip joint injuries or impairments. As we age, our joints, including the hip joint, may be subject to wear and degeneration due to natural aging, injuries, diseases, or genetic conditions. This can lead to issues such as Osteoartrose, affecting people's quality of life and mobility. Fortunately, medical science offers treatment options for addressing hip Osteoartrose. Total Hip Arthroplasty (THA) is an effective surgical intervention aimed at restoring hip joint function by replacing the damaged joint with a prosthesis. This surgical procedure is one of the most successful in the field of orthopaedics and has significantly improved the lives of countless individuals, providing pain relief, restored mobility, and a substantial enhancement in their quality of life. Nonetheless, the decision on when to undergo Total Hip Arthroplasty is critical and is often based on the severity of symptoms, the patient's age, and other clinical factors. Furthermore, ongoing research and advances in the medical field continuously seek to further enhance the techniques and materials used in hip joint prostheses, ensuring increasingly successful outcomes. In this THA investigation, we conducted an in-depth analysis of the performance of two prostheses made of cobalt-chromium and titanium, exploring the influence of stem design using numerical simulation with COMSOL Multiphysics software. The initial goal of the project was to evaluate the practical application of THA in Portugal. However, the lack of reliable data from official sources posed a challenge, leading us to collaborate with the Lusíadas Hospital of Porto (LHP). Data on 982 hip arthroplasties from the years 2007 and 2022 were shared, identifying the most frequently used femoral stem models at LHP, including the Depuy J&J Corail stem and Stryker's Exeter and Accolade stems. Adapting the geometries for 3D simulation of these stems proved to be a complex process, necessitating access to more precise models to mimic reality. Collaboration with Dr. Emilio Ruiz Reina from the University of Málaga (Spain) and the support of Dr. Maria Lázaro from the Institute of Research and Innovation in Health (I3S) were crucial for the simulation's development. After completing the stem modelling, we conducted static simulations in various daily activities (walking, ascending and descending stairs, standing on one leg, kneeling, and sitting and standing). Results were obtained by generating von Mises stress diagrams and displacement for both stems in all activities, using cobalt-chromium and titanium materials. In the simulation process, geometries, meshes, and studies were carefully considered to closely approximate an in vivo study. The results showed that common activities like climbing and descending stairs resulted in higher stress peaks on the models, regardless of the material used. However, it is essential to note that the results are based on a static study and do not entirely represent the dynamic behaviour of prostheses during daily activities. Suggestions for future studies include conducting stress-life studies to assess prosthesis fatigue over time and replicating hip joint movements for more realistic wear tests. Overall, this study significantly contributed to understanding the biomechanics of prostheses in Total Hip Arthroplasty and provided valuable insights for improving the clinical performance of these implants.
Description
Keywords
Total Hip Arthroplasty hip joint femur Exeter stem Accolade stem COMSOL Multiphysics numerical simulation stress displacement