Repository logo
 
Publication

Adomian Decomposition and Fractional Power Series Solution of a Class of Nonlinear Fractional Differential Equations

dc.contributor.authorMohammed, Pshtiwan Othman
dc.contributor.authorMachado, J. A. Tenreiro
dc.contributor.authorGuirao, Juan L. G.
dc.contributor.authorAgarwal, Ravi P.
dc.date.accessioned2021-10-01T14:43:32Z
dc.date.available2021-10-01T14:43:32Z
dc.date.issued2021
dc.description.abstractNonlinear fractional differential equations reflect the true nature of physical and biological models with non-locality and memory effects. This paper considers nonlinear fractional differential equations with unknown analytical solutions. The Adomian decomposition and the fractional power series methods are adopted to approximate the solutions. The two approaches are illustrated and compared by means of four numerical examples.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.3390/math9091070pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/18649
dc.language.isoengpt_PT
dc.publisherMDPIpt_PT
dc.relation.publisherversionhttps://www.mdpi.com/2227-7390/9/9/1070pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectAdomian decomposition methodpt_PT
dc.subjectFractional power series methodpt_PT
dc.subjectNonlinear fractional differential equationspt_PT
dc.titleAdomian Decomposition and Fractional Power Series Solution of a Class of Nonlinear Fractional Differential Equationspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.issue9pt_PT
oaire.citation.startPage1070pt_PT
oaire.citation.titleMathematicspt_PT
oaire.citation.volume9pt_PT
person.familyNameTenreiro Machado
person.givenNameJ. A.
person.identifier.ciencia-id7A18-4935-5B29
person.identifier.orcid0000-0003-4274-4879
person.identifier.ridM-2173-2013
person.identifier.scopus-author-id55989030100
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication82cd5c17-07b6-492b-b3e3-ecebdad1254f
relation.isAuthorOfPublication.latestForDiscovery82cd5c17-07b6-492b-b3e3-ecebdad1254f

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ART_DEE_JTM_Mathematics_2021.pdf
Size:
342.82 KB
Format:
Adobe Portable Document Format