Repository logo
 
Publication

Contextual Q-Learning

dc.contributor.authorVale, Zita
dc.contributor.authorPinto, Tiago
dc.date.accessioned2021-03-08T12:56:27Z
dc.date.available2021-03-08T12:56:27Z
dc.date.issued2020-09
dc.description.abstractThis paper highlights a new learning model that introduces a contextual dimension to the well-known Q-Learning algorithm. Through the identification of different contexts, the learning process is adapted accordingly, thus converging to enhanced results. The proposed learning model includes a simulated annealing (SA) process that accelerates the convergence process. The model is integrated in a multi-agent decision support system for electricity market players negotiations, enabling the experimentation of results using real electricity market data.pt_PT
dc.description.sponsorshipThis work has received funding from the EU Horizon 2020 research and innovation program under project DOMINOES (grant agreement No 771066) and from FEDER Funds through COMPETE program and from National Funds through FCT under projects CEECIND/01811/2017 and UIDB/00760/2020pt_PT
dc.description.versionN/Apt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/17298
dc.language.isoengpt_PT
dc.relationCEECIND/01811/2017pt_PT
dc.relationSmart Distribution Grid: a Market Driven Approach for the Next Generation of Advanced Operation Models and Services
dc.relationResearch Group on Intelligent Engineering and Computing for Advanced Innovation and Development
dc.relation.publisherversionhttps://digital.ecai2020.eu/accepted-papers-main-conference/pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectContextual Q-Learningpt_PT
dc.titleContextual Q-Learningpt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.awardTitleSmart Distribution Grid: a Market Driven Approach for the Next Generation of Advanced Operation Models and Services
oaire.awardTitleResearch Group on Intelligent Engineering and Computing for Advanced Innovation and Development
oaire.awardURIinfo:eu-repo/grantAgreement/EC/H2020/771066/EU
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00760%2F2020/PT
oaire.citation.conferencePlaceSantiago de Compostela, Spainpt_PT
oaire.citation.startPage1530pt_PT
oaire.citation.title24th European Conference on Artificial Intelligence (ECAI 2020)pt_PT
oaire.fundingStreamH2020
oaire.fundingStream6817 - DCRRNI ID
person.familyNameVale
person.familyNamePinto
person.givenNameZita
person.givenNameTiago
person.identifier632184
person.identifierR-000-T7J
person.identifier.ciencia-id721B-B0EB-7141
person.identifier.ciencia-id2414-9B03-C4BB
person.identifier.orcid0000-0002-4560-9544
person.identifier.orcid0000-0001-8248-080X
person.identifier.ridA-5824-2012
person.identifier.ridT-2245-2018
person.identifier.scopus-author-id7004115775
person.identifier.scopus-author-id35219107600
project.funder.identifierhttp://doi.org/10.13039/501100008530
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameEuropean Commission
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublicationff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isAuthorOfPublication8d58ddc0-1023-47c0-a005-129d412ce98d
relation.isAuthorOfPublication.latestForDiscoveryff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isProjectOfPublication166b0a9d-d964-4026-9532-601559959486
relation.isProjectOfPublicationdb3e2edb-b8af-487a-b76a-f6790ac2d86e
relation.isProjectOfPublication.latestForDiscoverydb3e2edb-b8af-487a-b76a-f6790ac2d86e

Files