Publication
Nonlinear Dynamics for Local Fractional Burgers Equation Arising in Fractal Flow
dc.contributor.author | Yang, Xiao-Jun | |
dc.contributor.author | Machado, J. A. Tenreiro | |
dc.contributor.author | Hristov, Jordan | |
dc.date.accessioned | 2015-11-20T11:50:32Z | |
dc.date.available | 2015-11-20T11:50:32Z | |
dc.date.issued | 2015 | |
dc.description.abstract | The local fractional Burgers’ equation (LFBE) is investigated from the point of view of local fractional conservation laws envisaging a nonlinear local fractional transport equation with a linear non-differentiable diffusion term. The local fractional derivative transformations and the LFBE conversion to a linear local fractional diffusion equation are analyzed. | pt_PT |
dc.identifier.doi | 10.1007/s11071-015-2085-2 | pt_PT |
dc.identifier.uri | http://hdl.handle.net/10400.22/6962 | |
dc.language.iso | eng | pt_PT |
dc.publisher | Springer | pt_PT |
dc.relation.ispartofseries | Nonlinear Dynamics; | |
dc.relation.publisherversion | http://link.springer.com/article/10.1007/s11071-015-2085-2 | pt_PT |
dc.subject | Conservation laws | pt_PT |
dc.subject | Burgers’ equation | pt_PT |
dc.subject | Transport equation | pt_PT |
dc.subject | Diffusion equation | pt_PT |
dc.subject | Local fractional derivative | pt_PT |
dc.title | Nonlinear Dynamics for Local Fractional Burgers Equation Arising in Fractal Flow | pt_PT |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.citation.title | Nonlinear Dynamics | pt_PT |
person.familyName | Tenreiro Machado | |
person.givenName | J. A. | |
person.identifier.ciencia-id | 7A18-4935-5B29 | |
person.identifier.orcid | 0000-0003-4274-4879 | |
person.identifier.rid | M-2173-2013 | |
person.identifier.scopus-author-id | 55989030100 | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | article | pt_PT |
relation.isAuthorOfPublication | 82cd5c17-07b6-492b-b3e3-ecebdad1254f | |
relation.isAuthorOfPublication.latestForDiscovery | 82cd5c17-07b6-492b-b3e3-ecebdad1254f |