Publication
A New Hybrid-Adaptive Differential Evolution for a Smart Grid Application Under Uncertainty
| dc.contributor.author | Lezama, Fernando | |
| dc.contributor.author | Soares, João | |
| dc.contributor.author | Faia, Ricardo | |
| dc.contributor.author | Pinto, Tiago | |
| dc.contributor.author | Vale, Zita | |
| dc.date.accessioned | 2021-02-24T15:06:53Z | |
| dc.date.available | 2021-02-24T15:06:53Z | |
| dc.date.issued | 2018 | |
| dc.description.abstract | Power systems are showing a dynamic evolution in the last few years, caused in part by the adoption of smart grid technologies. The integration of new elements that represent a source of uncertainty, such as renewables generation, electric vehicles, variable loads and electricity markets, poses a higher degree of complexity causing that traditional mathematical formulations struggle in finding efficient solutions to problems in the smart grid context. In some situations, where traditional approaches fail, computational intelligence has demonstrated being a very powerful tool for solving optimization problems. In this paper, we analyze the application of Differential Evolution (DE) to address an energy resource management problem under uncertain environments. We perform a systematic parameter tuning to determine the best set of parameters of four state-of-the-art DE strategies. Having knowledge of the sensitivity of DE to the parameter selection, self-adaptive parameter control DE algorithms are also implemented, showing that competitive results can be achieved without the application of parameter tuning methodologies. Finally, a new hybrid-adaptive DE algorithm, HyDE, which uses a new “DE/target - to - perturbed_best/1” strategy and an adaptive control parameter mechanism, is proposed to solve the problem. Results show that DE strategies with fixed parameters, despite very sensitive to the setting, can find better solutions than some adaptive DE versions. Overall, our HyDE algorithm excelled all the other tested algorithms, proving its effectiveness solving a smart grid application under uncertainty. | pt_PT |
| dc.description.sponsorship | his work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 641794 (project DREAM-GO) and from FEDER Funds through COMPETE program and from National Funds through FCT under the project UID/EEA/00760/2013 | pt_PT |
| dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
| dc.identifier.doi | 10.1109/CEC.2018.8477808 | pt_PT |
| dc.identifier.isbn | 978-1-5090-6017-7 | |
| dc.identifier.uri | http://hdl.handle.net/10400.22/17123 | |
| dc.language.iso | eng | pt_PT |
| dc.publisher | IEEE | pt_PT |
| dc.relation | Enabling Demand Response for short and real-time Efficient And Market Based smart Grid Operation - An intelligent and real-time simulation approach | |
| dc.relation.publisherversion | https://ieeexplore.ieee.org/document/8477808 | pt_PT |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | pt_PT |
| dc.subject | Uncertainty | pt_PT |
| dc.subject | Smart grid | pt_PT |
| dc.subject | Mathematical model | pt_PT |
| dc.subject | Complexity theory | pt_PT |
| dc.subject | Optimization | pt_PT |
| dc.subject | Energy resources | pt_PT |
| dc.subject | Weather forecasting | pt_PT |
| dc.title | A New Hybrid-Adaptive Differential Evolution for a Smart Grid Application Under Uncertainty | pt_PT |
| dc.type | conference object | |
| dspace.entity.type | Publication | |
| oaire.awardTitle | Enabling Demand Response for short and real-time Efficient And Market Based smart Grid Operation - An intelligent and real-time simulation approach | |
| oaire.awardURI | info:eu-repo/grantAgreement/EC/H2020/641794/EU | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/5876/UID%2FEEA%2F00760%2F2013/PT | |
| oaire.citation.conferencePlace | Rio de Janeiro, Brazil | pt_PT |
| oaire.citation.endPage | 8 | pt_PT |
| oaire.citation.startPage | 1 | pt_PT |
| oaire.citation.title | 2018 IEEE Congress on Evolutionary Computation (CEC) | pt_PT |
| oaire.fundingStream | H2020 | |
| oaire.fundingStream | 5876 | |
| person.familyName | Lezama | |
| person.familyName | Soares | |
| person.familyName | Faia | |
| person.familyName | Pinto | |
| person.familyName | Vale | |
| person.givenName | Fernando | |
| person.givenName | João | |
| person.givenName | Ricardo Francisco Marcos | |
| person.givenName | Tiago | |
| person.givenName | Zita | |
| person.identifier | 1043580 | |
| person.identifier | 78FtZwIAAAAJ | |
| person.identifier | R-000-T7J | |
| person.identifier | 632184 | |
| person.identifier.ciencia-id | E31F-56D6-1E0F | |
| person.identifier.ciencia-id | 1612-8EA8-D0E8 | |
| person.identifier.ciencia-id | 9B12-19F6-D6C7 | |
| person.identifier.ciencia-id | 2414-9B03-C4BB | |
| person.identifier.ciencia-id | 721B-B0EB-7141 | |
| person.identifier.orcid | 0000-0001-8638-8373 | |
| person.identifier.orcid | 0000-0002-4172-4502 | |
| person.identifier.orcid | 0000-0002-1053-7720 | |
| person.identifier.orcid | 0000-0001-8248-080X | |
| person.identifier.orcid | 0000-0002-4560-9544 | |
| person.identifier.rid | A-6945-2017 | |
| person.identifier.rid | T-2245-2018 | |
| person.identifier.rid | A-5824-2012 | |
| person.identifier.scopus-author-id | 36810077500 | |
| person.identifier.scopus-author-id | 35436109600 | |
| person.identifier.scopus-author-id | 35219107600 | |
| person.identifier.scopus-author-id | 7004115775 | |
| project.funder.identifier | http://doi.org/10.13039/501100008530 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.name | European Commission | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| rcaap.rights | openAccess | pt_PT |
| rcaap.type | conferenceObject | pt_PT |
| relation.isAuthorOfPublication | 6a55317b-92c2-404f-8542-c7a73061cc9b | |
| relation.isAuthorOfPublication | 9ece308b-6d79-4cec-af91-f2278dcc47eb | |
| relation.isAuthorOfPublication | 5866fe1d-e5f9-42fb-a7c8-e35a23d6a6ce | |
| relation.isAuthorOfPublication | 8d58ddc0-1023-47c0-a005-129d412ce98d | |
| relation.isAuthorOfPublication | ff1df02d-0c0f-4db1-bf7d-78863a99420b | |
| relation.isAuthorOfPublication.latestForDiscovery | 9ece308b-6d79-4cec-af91-f2278dcc47eb | |
| relation.isProjectOfPublication | 4a092e97-cc2f-4f57-8d3c-cf1709963516 | |
| relation.isProjectOfPublication | 237af9d5-70ed-4e45-9f10-3853d860255e | |
| relation.isProjectOfPublication.latestForDiscovery | 237af9d5-70ed-4e45-9f10-3853d860255e |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- COM_GECAD_ZitaVale_2018.pdf
- Size:
- 353.32 KB
- Format:
- Adobe Portable Document Format
