Repository logo
 
Publication

Automatic Selection of Optimization Algorithms for Energy Resource Scheduling using a Case-Based Reasoning System

dc.contributor.authorFaia, R.
dc.contributor.authorPinto, Tiago
dc.contributor.authorSousa, Tiago
dc.contributor.authorVale, Zita
dc.contributor.authorCorchado Rodríguez, Juan
dc.date.accessioned2021-03-03T17:40:13Z
dc.date.available2021-03-03T17:40:13Z
dc.date.issued2017
dc.description.abstractThis paper proposes a case-based reasoning methodology to automatically choose the most appropriate optimization algorithms and respective parameterizations to solve the problem of optimal resource scheduling in smart energy grids. The optimal resource scheduling is, however, a heavy computation problem, which deals with a large number of variables. Moreover, depending on the time horizon of this optimization, fast response times are usually required, which makes it impossible to apply traditional exact optimization methods. For this reason, the application of metaheuristic methods is the natural solution, providing near-optimal solutions in a much faster execution time. Choosing which optimization approaches to apply in each time is the focus of this work, considering the requirements for each problem and the information of previous executions. A case-based reasoning methodology is proposed, considering previous cases of execution of different optimization approaches for different problems. A fuzzy logic approach is used to adapt the solutions considering the balance between execution time and quality of resultspt_PT
dc.description.sponsorshipThis work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No This work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 641794 (project DREAM-GO) and a grant agreement No 703689 (project ADAPT); and from FEDER Funds through COMPETE program and from National Funds through FCT under the project UID/EEA/00760/2013 (project DREAM-GO) and a grant agreement No 703689 (project ADAPT); and from FEDER Funds through COMPETE program and from National Funds through FCT under the project UID/EEA/00760/2013pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/17267
dc.language.isoengpt_PT
dc.relationAdaptive Decision support for Agents negotiation in electricity market and smart grid Power Transactions
dc.relationEnabling Demand Response for short and real-time Efficient And Market Based smart Grid Operation - An intelligent and real-time simulation approach
dc.relation.publisherversionhttps://dblp.org/db/conf/iccbr/iccbr2017w.htmlpt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/pt_PT
dc.subjectCase Base Reasoningpt_PT
dc.subjectOptimization Algorithmpt_PT
dc.subjectClassificationpt_PT
dc.titleAutomatic Selection of Optimization Algorithms for Energy Resource Scheduling using a Case-Based Reasoning Systempt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.awardTitleAdaptive Decision support for Agents negotiation in electricity market and smart grid Power Transactions
oaire.awardTitleEnabling Demand Response for short and real-time Efficient And Market Based smart Grid Operation - An intelligent and real-time simulation approach
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/5876/UID%2FEEA%2F00760%2F2013/PT
oaire.awardURIinfo:eu-repo/grantAgreement/EC/H2020/703689/EU
oaire.awardURIinfo:eu-repo/grantAgreement/EC/H2020/641794/EU
oaire.citation.conferencePlaceTrondheim, Norwaypt_PT
oaire.citation.title25th International Conference on Case-Based Reasoning ICCBR 2017pt_PT
oaire.fundingStream5876
oaire.fundingStreamH2020
oaire.fundingStreamH2020
person.familyNameFaia
person.familyNamePinto
person.familyNameVale
person.givenNameRicardo Francisco Marcos
person.givenNameTiago
person.givenNameZita
person.identifier78FtZwIAAAAJ
person.identifierR-000-T7J
person.identifier632184
person.identifier.ciencia-id9B12-19F6-D6C7
person.identifier.ciencia-id2414-9B03-C4BB
person.identifier.ciencia-id721B-B0EB-7141
person.identifier.orcid0000-0002-1053-7720
person.identifier.orcid0000-0001-8248-080X
person.identifier.orcid0000-0002-4560-9544
person.identifier.ridT-2245-2018
person.identifier.ridA-5824-2012
person.identifier.scopus-author-id35219107600
person.identifier.scopus-author-id7004115775
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100008530
project.funder.identifierhttp://doi.org/10.13039/501100008530
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameEuropean Commission
project.funder.nameEuropean Commission
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication5866fe1d-e5f9-42fb-a7c8-e35a23d6a6ce
relation.isAuthorOfPublication8d58ddc0-1023-47c0-a005-129d412ce98d
relation.isAuthorOfPublicationff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isAuthorOfPublication.latestForDiscovery8d58ddc0-1023-47c0-a005-129d412ce98d
relation.isProjectOfPublication237af9d5-70ed-4e45-9f10-3853d860255e
relation.isProjectOfPublication0659ce55-4ace-4540-b5e4-06dea6a17510
relation.isProjectOfPublication4a092e97-cc2f-4f57-8d3c-cf1709963516
relation.isProjectOfPublication.latestForDiscovery237af9d5-70ed-4e45-9f10-3853d860255e

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
COM_GECAD_RFaia_2017.pdf
Size:
500.73 KB
Format:
Adobe Portable Document Format