Publication
Clustering-based negotiation profiles definition for local energy transactions
dc.contributor.author | Pinto, Angelo | |
dc.contributor.author | Pinto, Tiago | |
dc.contributor.author | Praça, Isabel | |
dc.contributor.author | Vale, Zita | |
dc.contributor.author | Faria, Pedro | |
dc.date.accessioned | 2022-03-17T10:52:10Z | |
dc.date.available | 2022-03-17T10:52:10Z | |
dc.date.issued | 2018 | |
dc.description.abstract | Electricity markets are complex and dynamic environments, mostly due to the large scale integration of renewable energy sources in the system. Negotiation in these markets is a significant challenge, especially when considering negotiations at the local level (e.g., between buildings and distributed energy resources). It is essential for a negotiator to be able to identify the negotiation profile of the players with whom he is negotiating. If a negotiator knows these profiles, it is possible to adapt the negotiation strategy and get better results in a negotiation. In order to identify and define such negotiation profiles, a clustering process is proposed in this paper. The clustering process is performed using the kml-k-means algorithm, in which several negotiation approaches are evaluated in order to identify and define players' negotiation profiles. A case study is presented, using as input data, information from proposals made during a set of negotiations. Results show that the proposed approach is able to identify players' negotiation profiles used in bilateral negotiations in electricity markets. | pt_PT |
dc.description.sponsorship | This work has been developed under the CONTEST project - SAICTPOL/23575/2016 and has received funding from UID/EEA/00760/2013, funded by FEDER Funds through COMPETE program and by National Funds through FCT. | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.doi | 10.1109/SmartGridComm.2018.8587572 | pt_PT |
dc.identifier.isbn | 978-1-5386-7954-8 | |
dc.identifier.uri | http://hdl.handle.net/10400.22/20275 | |
dc.language.iso | eng | pt_PT |
dc.publisher | IEEE | pt_PT |
dc.relation.publisherversion | https://ieeexplore.ieee.org/document/8587572 | pt_PT |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | pt_PT |
dc.subject | Clustering | pt_PT |
dc.subject | Local energy markets | pt_PT |
dc.subject | Profile modelling | pt_PT |
dc.subject | k-means algorithm | pt_PT |
dc.subject | Clustering algorithms | pt_PT |
dc.subject | Buildings | pt_PT |
dc.title | Clustering-based negotiation profiles definition for local energy transactions | pt_PT |
dc.type | conference object | |
dspace.entity.type | Publication | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/5876/UID%2FEEA%2F00760%2F2013/PT | |
oaire.citation.conferencePlace | Aalborg , Denmark | pt_PT |
oaire.citation.endPage | 5 | pt_PT |
oaire.citation.startPage | 1 | pt_PT |
oaire.citation.title | 2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm) | pt_PT |
oaire.fundingStream | 5876 | |
person.familyName | Pinto | |
person.familyName | Praça | |
person.familyName | Vale | |
person.familyName | Faria | |
person.givenName | Tiago | |
person.givenName | Isabel | |
person.givenName | Zita | |
person.givenName | Pedro | |
person.identifier | R-000-T7J | |
person.identifier | 299522 | |
person.identifier | 632184 | |
person.identifier.ciencia-id | 2414-9B03-C4BB | |
person.identifier.ciencia-id | C710-4218-1BFF | |
person.identifier.ciencia-id | 721B-B0EB-7141 | |
person.identifier.ciencia-id | B212-2309-F9C3 | |
person.identifier.orcid | 0000-0001-8248-080X | |
person.identifier.orcid | 0000-0002-2519-9859 | |
person.identifier.orcid | 0000-0002-4560-9544 | |
person.identifier.orcid | 0000-0002-5982-8342 | |
person.identifier.rid | T-2245-2018 | |
person.identifier.rid | K-8430-2014 | |
person.identifier.rid | A-5824-2012 | |
person.identifier.scopus-author-id | 35219107600 | |
person.identifier.scopus-author-id | 22734900800 | |
person.identifier.scopus-author-id | 7004115775 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | conferenceObject | pt_PT |
relation.isAuthorOfPublication | 8d58ddc0-1023-47c0-a005-129d412ce98d | |
relation.isAuthorOfPublication | ee4ecacd-c6c6-41e8-bca1-21a60ff05f50 | |
relation.isAuthorOfPublication | ff1df02d-0c0f-4db1-bf7d-78863a99420b | |
relation.isAuthorOfPublication | 35e6a4ab-f644-4bc5-b6fc-9fd89c23d6c6 | |
relation.isAuthorOfPublication.latestForDiscovery | ee4ecacd-c6c6-41e8-bca1-21a60ff05f50 | |
relation.isProjectOfPublication | 237af9d5-70ed-4e45-9f10-3853d860255e | |
relation.isProjectOfPublication.latestForDiscovery | 237af9d5-70ed-4e45-9f10-3853d860255e |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- COM_GECAD_Zitavale_2018.pdf
- Size:
- 490.62 KB
- Format:
- Adobe Portable Document Format