Repository logo
 
No Thumbnail Available
Publication

Detection and Mitigation of Position Spoofing Attacks on Cooperative UAV Swarm Formations

Use this identifier to reference this record.
Name:Description:Size:Format: 
CISTER-TR-231201.pdf912.84 KBAdobe PDF Download

Advisor(s)

Abstract(s)

Detecting spoofing attacks on the positions of unmanned aerial vehicles (UAVs) within a swarm is challenging. Traditional methods relying solely on individually reported positions and pairwise distance measurements are ineffective in identifying the misbehavior of malicious UAVs. This paper presents a novel systematic structure designed to detect and mitigate spoofing attacks in UAV swarms. We formulate the problem of detecting malicious UAVs as a localization feasibility problem, leveraging the reported positions and distance measurements. To address this problem, we develop a semidefinite relaxation (SDR) approach, which reformulates the non-convex localization problem into a convex and tractable semidefinite program (SDP). Additionally, we propose two innovative algorithms that leverage the proximity of neighboring UAVs to identify malicious UAVs effectively. Simulations demonstrate the superior performance of our proposed approaches compared to existing benchmarks. Our methods exhibit robustness across various swarm networks, showcasing their effectiveness in detecting and mitigating spoofing attacks. Specifically, the detection success rate is improved by up to 65%, 55%, and 51% against distributed, collusion, and mixed attacks, respectively, compared to the benchmarks.

Description

Keywords

Citation

Research Projects

Organizational Units

Journal Issue

Publisher

CC License