Name: | Description: | Size: | Format: | |
---|---|---|---|---|
6.94 MB | Adobe PDF |
Advisor(s)
Abstract(s)
In this paper we present a new approach for the generation of
multi-instrument symbolic music driven by musical emotion. The principal
novelty of our approach centres on conditioning a state-of-the-art transformer
based on continuous-valued valence and arousal labels. In addition, we provide
a new large-scale dataset of symbolic music paired with emotion labels in terms
of valence and arousal. We evaluate our approach in a quantitative manner in
two ways, first by measuring its note prediction accuracy, and second via a
regression task in the valence-arousal plane. Our results demonstrate that our
proposed approaches outperform conditioning using control tokens which is
representative of the current state of the art.
Description
Keywords
Deep Learning Symbolic Music Generation Emotion-Based Music Generation Transformers
Citation
S. Sulun, M. E. P. Davies and P. Viana, "Symbolic Music Generation Conditioned on Continuous-Valued Emotions," in IEEE Access, vol. 10, pp. 44617-44626, 2022, doi: 10.1109/ACCESS.2022.3169744.
Publisher
IEEE