Repository logo
 
Publication

Multiple Linear Regression and Artificial Neural Networks to Predict Time and Efficiency of Soil Vapor Extraction

dc.contributor.authorAlbergaria, José Tomás
dc.contributor.authorMartins, F.G.
dc.contributor.authorAlvim-Ferraz, Maria da Conceição M.
dc.contributor.authorDelerue-Matos, Cristina
dc.date.accessioned2015-01-06T15:30:25Z
dc.date.available2015-01-06T15:30:25Z
dc.date.issued2014-07
dc.description.abstractThe prediction of the time and the efficiency of the remediation of contaminated soils using soil vapor extraction remain a difficult challenge to the scientific community and consultants. This work reports the development of multiple linear regression and artificial neural network models to predict the remediation time and efficiency of soil vapor extractions performed in soils contaminated separately with benzene, toluene, ethylbenzene, xylene, trichloroethylene, and perchloroethylene. The results demonstrated that the artificial neural network approach presents better performances when compared with multiple linear regression models. The artificial neural network model allowed an accurate prediction of remediation time and efficiency based on only soil and pollutants characteristics, and consequently allowing a simple and quick previous evaluation of the process viability.por
dc.identifier.doi10.1007/s11270-014-2058-y
dc.identifier.urihttp://hdl.handle.net/10400.22/5313
dc.language.isoengpor
dc.peerreviewedyespor
dc.publisherSpringer International Publishingpor
dc.relation.ispartofseriesWater, Air, & Soil Pollution;Vol. 225
dc.relation.publisherversionhttp://link.springer.com/article/10.1007%2Fs11270-014-2058-ypor
dc.subjectSoil vapor extractionpor
dc.subjectArtificial neural networkspor
dc.subjectMultiple linear regressionpor
dc.subjectRemediation timepor
dc.subjectProcess efficiencypor
dc.titleMultiple Linear Regression and Artificial Neural Networks to Predict Time and Efficiency of Soil Vapor Extractionpor
dc.typejournal article
dspace.entity.typePublication
oaire.citation.startPage2058por
oaire.citation.titleWater, Air, & Soil Pollutionpor
oaire.citation.volume225por
person.familyNameAlvim-Ferraz
person.familyNameDelerue-Matos
person.givenNameMaria da Conceição
person.givenNameCristina
person.identifier.ciencia-id621C-0AAB-ABF9
person.identifier.ciencia-id9A1A-43FB-5C27
person.identifier.orcid0000-0001-8212-8718
person.identifier.orcid0000-0002-3924-776X
person.identifier.ridP-9868-2017
person.identifier.ridD-4990-2013
person.identifier.scopus-author-id6603921357
person.identifier.scopus-author-id6603741848
rcaap.rightsopenAccesspor
rcaap.typearticlepor
relation.isAuthorOfPublicationa9196bc3-6bc6-4270-8407-39356ba909b0
relation.isAuthorOfPublication09f6a7bd-2f15-42b0-adc5-04bd22210519
relation.isAuthorOfPublication.latestForDiscoverya9196bc3-6bc6-4270-8407-39356ba909b0

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ART_22_GRAQ_2014.pdf
Size:
620.27 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: