| Name: | Description: | Size: | Format: | |
|---|---|---|---|---|
| 5.22 MB | Adobe PDF |
Advisor(s)
Abstract(s)
Nos últimos anos, a produção de energia limpa sustentável tem-se tornado cada vez mais
relevante, impulsionada pela busca da independência energética e por um desenvolvimento
sustentável. A energia eólica, em particular offshore, tem assumido um papel de destaque
devido à sua capacidade de escalabilidade, refletida no forte investimento e no avanço
tecnológico continuo. O crescimento exponencial da potência nominal dos aerogeradores traz
novos desafios para os sistemas de transmissão, que enfrentam elevadas exigências
operacionais, dificuldades de manutenção e constrangimentos associados ao transporte e à
instalação em ambiente marítimo. Embora a transmissão direta seja atualmente predominante,
as suas limitações em massa dimensão e necessidade de metais raros justificam o
desenvolvimento de alternativas. Assim, esta dissertação teve como objetivo o
desenvolvimento preliminar de uma caixa multiplicadora, integrante num sistema de
transmissão de velocidade média, para um aerogerador offshore de 15 MW, procurando
conjugar as vantagens da transmissão direta e multiplicada. O trabalho centrou-se no cálculo
das engrenagens, seguindo normas internacionais e recorrendo a software especializado para
a validação estrutural, complementado pela análise de materiais, sistemas de lubrificação e
arrefecimento e demais componentes da cadeia cinemática. Os resultados demonstraram que
a solução proposta permite reduzir massa e volume do sistema de transmissão e
consequentemente da nacele, assegurando níveis de fiabilidade e estabilidade em operação.
Conclui-se que a solução preliminar proposta atingiu os objetivos estabelecidos, constituindo
uma base sólida para desenvolvimentos futuros e para a otimização de sistemas de transmissão
de velocidade média, com potencial de se tornarem alternativas mais leves, robustas e fiáveis
para o setor eólico offshore.
In recent years, the production of sustainable clean energy has become increasingly important, driven by the pursuit of energy independence and the need for sustainable development. Among renewable sources, wind energy—particularly offshore—has gained prominence" due to its scalability, supported by strong investment and continuous technological progress. The exponential growth in the rated power of wind turbines has introduced new challenges for transmission systems, which face demanding operational requirements, maintenance difficulties, and constraints related to transportation and installation in the marine environment. Although direct drive transmission is currently predominant, its limitations in terms of mass, size, and dependence on rare materials justify the exploration of alternative solutions. This dissertation focused on the preliminary design of a gearbox, integrated within a medium-speed transmission system for a 15 MW offshore wind turbine, aiming to combine the advantages of direct and geared transmissions. The work focused on gear calculations in accordance with international standards and employed specialised software for structural validation, complemented by analyses of materials, lubrication and cooling systems, and other elements of the drivetrain. The results demonstrated that the proposed solution enables a reduction in the mass and volume of the transmission system, and consequently of the nacele, while ensuring adequate levels of reliability and operational stability. It is concluded that the proposed preliminary design successfully met the defined objectives, establishing a solid foundation for future developments and for the optimisation of medium-speed transmission systems, with the potential to become lighter, more robust, and more reliable alternatives for the offshore wind energy sector.
In recent years, the production of sustainable clean energy has become increasingly important, driven by the pursuit of energy independence and the need for sustainable development. Among renewable sources, wind energy—particularly offshore—has gained prominence" due to its scalability, supported by strong investment and continuous technological progress. The exponential growth in the rated power of wind turbines has introduced new challenges for transmission systems, which face demanding operational requirements, maintenance difficulties, and constraints related to transportation and installation in the marine environment. Although direct drive transmission is currently predominant, its limitations in terms of mass, size, and dependence on rare materials justify the exploration of alternative solutions. This dissertation focused on the preliminary design of a gearbox, integrated within a medium-speed transmission system for a 15 MW offshore wind turbine, aiming to combine the advantages of direct and geared transmissions. The work focused on gear calculations in accordance with international standards and employed specialised software for structural validation, complemented by analyses of materials, lubrication and cooling systems, and other elements of the drivetrain. The results demonstrated that the proposed solution enables a reduction in the mass and volume of the transmission system, and consequently of the nacele, while ensuring adequate levels of reliability and operational stability. It is concluded that the proposed preliminary design successfully met the defined objectives, establishing a solid foundation for future developments and for the optimisation of medium-speed transmission systems, with the potential to become lighter, more robust, and more reliable alternatives for the offshore wind energy sector.
Description
Keywords
Offshore wind energy gearbox offshore wind turbine multiplied transmission direct drive transmission Medium Speed Gearbox Energia Eólica offshore caixa multiplicadora aerogerador offshore transmissão multiplicada transmissão direta transmissão de velocidade média
