Publication
Detection and Classification of Anomalies in Railway Tracks
datacite.subject.fos | Engenharia e Tecnologia | pt_PT |
dc.contributor.advisor | Marreiros, Maria Goreti Carvalho | |
dc.contributor.author | Magalhães, José Pedro da Silva | |
dc.date.accessioned | 2023-11-27T11:17:02Z | |
dc.date.available | 2023-11-27T11:17:02Z | |
dc.date.issued | 2023-10-26 | |
dc.description.abstract | Em Portugal, existe uma grande afluência dos transportes ferroviários. Acontece que as empresas que providenciam esses serviços por vezes necessitam de efetuar manutenção às vias-férreas/infraestruturas, o que leva à indisponibilização e/ou atraso dos serviços e máquinas, e consequentemente perdas monetárias. Assim sendo, torna-se necessário preparar um plano de manutenção e prever quando será fundamental efetuar manutenções, de forma a minimizar perdas. Através de um sistema de manutenção preditivo, é possível efetuar a manutenção apenas quando esta é necessária. Este tipo de sistema monitoriza continuamente máquinas e/ou processos, permitindo determinar quando a manutenção deverá existir. Uma das formas de fazer esta análise é treinar algoritmos de machine learning com uma grande quantidade de dados provenientes das máquinas e/ou processos. Nesta dissertação, o objetivo é contribuir para o desenvolvimento de um sistema de manutenção preditivo nas vias-férreas. O contributo específico será detetar e classificar anomalias. Para tal, recorrem-se a técnicas de Machine Learning e Deep Learning, mais concretamente algoritmos não supervisionados e semi-supervisionados, pois o conjunto de dados fornecido possui um número reduzido de anomalias. A escolha dos algoritmos é feita com base naquilo que atualmente é mais utilizado e apresenta melhores resultados. Assim sendo, o primeiro passo da dissertação consistiu em investigar quais as implementações mais comuns para detetar e classificar anomalias em sistemas de manutenção preditivos. Após a investigação, foram treinados os algoritmos que à primeira vista seriam capazes de se adaptar ao cenário apresentado, procurando encontrar os melhores hiperparâmetros para os mesmos. Chegou-se à conclusão, através da comparação da performance, que o mais enquadrado para abordar o problema da identificação das anomalias seria uma rede neuronal artifical Autoencoder. Através dos resultados deste modelo, foi possível definir thresholds para efetuar posteriormente a classificação da anomalia. | pt_PT |
dc.description.abstract | In Portugal, the railway tracks commonly require maintenance, which leads to a stop/delay of the services, and consequently monetary losses and the non-full use of the equipment. With the use of a Predictive Maintenance System, these problems can be minimized, since these systems continuously monitor the machines and/or processes and determine when maintenance is required. Predictive Maintenance systems can be put together with machine and/or deep learning algorithms since they can be trained with high volumes of historical data and provide diagnosis, detect and classify anomalies, and estimate the lifetime of a machine/process. This dissertation contributes to developing a predictive maintenance system for railway tracks/infrastructure. The main objectives are to detect and classify anomalies in the railway track. To achieve this, unsupervised and semi-supervised algorithms are tested and tuned to determine the one that best adapts to the presented scenario. The algorithms need to be unsupervised and semi-supervised given the few anomalous labels in the dataset. | pt_PT |
dc.identifier.tid | 203380762 | pt_PT |
dc.identifier.uri | http://hdl.handle.net/10400.22/23983 | |
dc.language.iso | eng | pt_PT |
dc.subject | Predictive Maintenance | pt_PT |
dc.subject | Unsupervised learning | pt_PT |
dc.subject | semi-supervised learning | pt_PT |
dc.subject | railway tracks | pt_PT |
dc.title | Detection and Classification of Anomalies in Railway Tracks | pt_PT |
dc.type | master thesis | |
dspace.entity.type | Publication | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | masterThesis | pt_PT |
thesis.degree.name | Engenharia de Inteligência Artificial | pt_PT |