Name: | Description: | Size: | Format: | |
---|---|---|---|---|
3.96 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
Atualmente, os plásticos oferecem uma vasta gama de aplicações indispensáveis para a sociedade. Esta dependência torna-se cada vez mais insustentável, com impactes a nível social, ecológico e económico por vários motivos: (1) origem em matéria-prima fóssil; (2) a grande maioria dos polímeros que produzimos são polímeros sintéticos, que possuem uma baixa taxa de degradação. Tendo em conta o referido e as exigências futuras, a necessidade de substituir os plásticos convencionais por novos materiais de origem natural, e, cumulativamente, biodegradáveis é cada vez mais urgente. No âmbito do estágio curricular no ISQ, este trabalho surge alinhado com o projeto BIOMAC, que procura desenvolver conhecimento ao longo da cadeia de produção dos bio-plásticos. Com este enquadramento, foi desenvolvido um estudo com enfoque na cadeia de valor da celulose. A celulose, juntamente com a lignina e a hemicelulose, pode ser extraída de biomassa lignocelulósica. Esta biomassa, que podemos encontrar em plantas e algas, é a fonte mais abundante e renovável de polímeros naturais. A partir do polímero celulose podemos obter diversos produtos de valor acrescentado como a nanocelulose, o ácido lático e o ácido succínico. O ácido lático, químico com elevado potencial e amplamente utilizado na produção de polímeros (PLA, ou polylactic acid), foi o elemento selecionado para o caso de estudo desta dissertação. Deste modo, o objetivo do presente trabalho é o de avaliar os impactes ambientais do ciclo de vida do ácido lático através da metodologia de Avaliação de Ciclo de Vida (ACV). Foram analisados dois cenários distintos: (i) produção do ácido lático à escala laboratorial; (ii) produção do ácido lático à escala piloto. Com suporte na metodologia de ACV foi traçado o perfil ambiental dos dois cenários, identificando quais os principais pontos críticos de cada um, de modo a identificar medidas de melhoria para cada cenário. A unidade funcional utilizada foi 1 kg de ácido lático. O inventário do ciclo de vida foi elaborado de acordo com dados da literatura e com a base de dados Ecoinvent v3. Os resultados de impacte ambiental do ciclo de vida foram obtidos através do método de avaliação “ReCiPe 2016 Midpoint (H) V1.06 / World (2010) H”, disponível no software SimaProTM 9.3.0.3. Assim, foram analisadas 18 categorias de impacte. Relativamente aos resultados obtidos, no caso da produção de ácido lático à escala laboratorial, este estudo permitiu concluir que os principais pontos críticos do processo são a produção de polpa de café, a hidrólise enzimática e a fermentação (incluindo o inóculo), representando 12%, 30% e 57% dos impactes totais, respetivamente. No que diz respeito a produção à escala piloto, os pontos críticos são os mesmos, sendo que neste caso o principal é a fase de hidrólise enzimática, com 51% dos impactes totais. A polpa de café e a fase de fermentação (com inóculo) representam 28% e 19% dos impactes totais, respetivamente. Em ambos os cenários, as enzimas e o consumo energético apresentam maior relevância para os impactes totais, sendo que, a principal diferença entre as duas escalas se encontra sobretudo no consumo energético por unidade funcional, que, naturalmente, é muito superior na produção em escala laboratorial. Com o intuito de entender melhor a importância do consumo de eletricidade nos cenários analisados, este estudo apresenta também uma análise de sensibilidade. Nesta, o mix energético inicial foi substituído pelo mix energético norueguês (que tem uma maior percentagem de energia de fontes renováveis). Os resultados obtidos demonstram que a substituição por um mix que contenha maiores frações de energias renováveis permite diminuir significativamente os impactes associados ao consumo energético. Relativamente ao caso da produção à escala laboratorial, foram registadas reduções entre 80 e 95% dos impactes totais na maioria das categorias. A fase de fermentação (com inóculo), originalmente o principal ponto crítico desta escala, registou uma diminuição acentuada, passando agora a representar apenas 26% dos impactes. No caso da escala piloto, as reduções não são tão acentuadas, registando-se diminuições entre 25 e 65%. A fase de fermentação (com inóculo), anteriormente um ponto crítico do processo, deixa de o ser visto que nesta situação apenas representa 5% dos impactes totais. Os resultados demonstrados neste trabalho permitem identificar e indicar quais são os processos e/ou produtos que devem ser otimizados de modo a obtermos polímeros que sejam uma solução económica e ambientalmente viável. De modo a melhorar a produção sugere-se a otimização da produção de polpa de café e enzimas, e a redução dos consumos energéticos. Futuramente seria interessante realizar estudos sobre os processos de produção de enzimas e meios de cultura e fazer uma análise cradle-tograve do processo de produção do ácido lático.
Nowadays, plastics offer a wide range of essential applications for society. This dependence becomes increasingly unsustainable, with social, ecological, and economic impacts for several reasons: (1) origin in fossil raw materials; (2) most polymers that we produce are synthetic polymers, which have a low degradation rate. Considering the above mentioned and the future demands, the need to replace conventional plastics by new materials of natural origin, and biodegradable ones, is increasingly urgent. Within the scope of the internship at ISQ, the present work aligns with the BIOMAC project that aims to develop and improve processes along the value chain of bioplastics. Under that frame, this study focused on the cellulose value chain. Cellulose, together with lignin and hemicellulose, can be extracted from lignocellulosic biomass. This biomass, which can be found in plants and algae, is the most abundant and renewable source of natural polymers. From the cellulose polymer we can obtain various valueadded products such as nanocellulose, lactic acid and succinic acid. The lactic acid, a chemical with high potential and widely used in the production of polymers (PLA, polylactic acid), was the compound selected for the case study of this dissertation. Thus, the objective of this work was to evaluate the life cycle environmental impacts to produce lactic acid through the methodology of Life Cycle Assessment (LCA). Two distinct scenarios were analyzed: (i) lactic acid production at laboratory scale; (ii) lactic acid production at pilot scale. With support from the LCA methodology the environmental profile of the two scenarios was drawn, identifying which were the main corresponding hotspots, in order to identify improvement measures for each scenario. The functional unit used was 1 kg of lactic acid. The life cycle inventory was prepared according to literature data and the Ecoinvent v3 database. The life cycle environmental impact results were obtained using the "ReCiPe 2016 Midpoint (H) V1.06 / World (2010) H" assessment method, available in the SimaProTM 9.3.0.3 software. Thus, 18 impact categories were analyzed. Regarding the results obtained, in the case of the production of lactic acid at laboratory scale, this study concluded that the main hotspots of the process are the production of coffee pulp, the enzymatic hydrolysis phase and the fermentation (including the inoculum) phase, representing 12%, 3% and 57% of the total impacts, respectively. Regarding pilot scale production, the hotspots are the same, and in this case the main one being the enzymatic hydrolysis phase, representing 51% of total impacts. The coffee pulp and the fermentation (with inoculum) phase represent 28% and 19% of the total impacts, respectively. In both scenarios, enzymes and energy consumption present greater relevance for the total impacts, and the main difference between the two scales is mainly in the energy consumption per functional unit, which is much higher in the laboratory scale. With the purpose of better understanding the importance of electricity in the analyzed scenarios, this study also presents a sensitivity analysis. Therefore, the initial energy mix was replaced by the Norwegian energy mix. The results obtained demonstrate that the substitution by an energy mix containing greater fractions of renewable energies allows for a significant reduction of the impacts associated with energy consumption. For the case of laboratory-scale production, reductions between 80 and 95% of the total impacts were recorded in most categories. The fermentation and inoculum phase, originally the main hotspots of the laboratory-scale process, registered a significant decrease, now representing only 26% of the impacts. In the case of the pilot scale, the reductions are not so intense, with decreases between 25 and 65%. With a 5% representation of total impacts, the fermentation and inoculation phase is no longer a hotspot of the process. The results demonstrated in this work allow us to identify and indicate which processes and/or products should be optimized to obtain polymers that represent an economically and environmentally viable solution. To improve production, we suggest optimizing the production of coffee pulp and enzymes and reducing energy consumption. In the future it would be interesting to carry out studies on the production processes of enzymes and culture media and to make a cradle-to-grave analysis of the lactic acid production process.
Nowadays, plastics offer a wide range of essential applications for society. This dependence becomes increasingly unsustainable, with social, ecological, and economic impacts for several reasons: (1) origin in fossil raw materials; (2) most polymers that we produce are synthetic polymers, which have a low degradation rate. Considering the above mentioned and the future demands, the need to replace conventional plastics by new materials of natural origin, and biodegradable ones, is increasingly urgent. Within the scope of the internship at ISQ, the present work aligns with the BIOMAC project that aims to develop and improve processes along the value chain of bioplastics. Under that frame, this study focused on the cellulose value chain. Cellulose, together with lignin and hemicellulose, can be extracted from lignocellulosic biomass. This biomass, which can be found in plants and algae, is the most abundant and renewable source of natural polymers. From the cellulose polymer we can obtain various valueadded products such as nanocellulose, lactic acid and succinic acid. The lactic acid, a chemical with high potential and widely used in the production of polymers (PLA, polylactic acid), was the compound selected for the case study of this dissertation. Thus, the objective of this work was to evaluate the life cycle environmental impacts to produce lactic acid through the methodology of Life Cycle Assessment (LCA). Two distinct scenarios were analyzed: (i) lactic acid production at laboratory scale; (ii) lactic acid production at pilot scale. With support from the LCA methodology the environmental profile of the two scenarios was drawn, identifying which were the main corresponding hotspots, in order to identify improvement measures for each scenario. The functional unit used was 1 kg of lactic acid. The life cycle inventory was prepared according to literature data and the Ecoinvent v3 database. The life cycle environmental impact results were obtained using the "ReCiPe 2016 Midpoint (H) V1.06 / World (2010) H" assessment method, available in the SimaProTM 9.3.0.3 software. Thus, 18 impact categories were analyzed. Regarding the results obtained, in the case of the production of lactic acid at laboratory scale, this study concluded that the main hotspots of the process are the production of coffee pulp, the enzymatic hydrolysis phase and the fermentation (including the inoculum) phase, representing 12%, 3% and 57% of the total impacts, respectively. Regarding pilot scale production, the hotspots are the same, and in this case the main one being the enzymatic hydrolysis phase, representing 51% of total impacts. The coffee pulp and the fermentation (with inoculum) phase represent 28% and 19% of the total impacts, respectively. In both scenarios, enzymes and energy consumption present greater relevance for the total impacts, and the main difference between the two scales is mainly in the energy consumption per functional unit, which is much higher in the laboratory scale. With the purpose of better understanding the importance of electricity in the analyzed scenarios, this study also presents a sensitivity analysis. Therefore, the initial energy mix was replaced by the Norwegian energy mix. The results obtained demonstrate that the substitution by an energy mix containing greater fractions of renewable energies allows for a significant reduction of the impacts associated with energy consumption. For the case of laboratory-scale production, reductions between 80 and 95% of the total impacts were recorded in most categories. The fermentation and inoculum phase, originally the main hotspots of the laboratory-scale process, registered a significant decrease, now representing only 26% of the impacts. In the case of the pilot scale, the reductions are not so intense, with decreases between 25 and 65%. With a 5% representation of total impacts, the fermentation and inoculation phase is no longer a hotspot of the process. The results demonstrated in this work allow us to identify and indicate which processes and/or products should be optimized to obtain polymers that represent an economically and environmentally viable solution. To improve production, we suggest optimizing the production of coffee pulp and enzymes and reducing energy consumption. In the future it would be interesting to carry out studies on the production processes of enzymes and culture media and to make a cradle-to-grave analysis of the lactic acid production process.
Description
Keywords
Ácido lático Avaliação de ciclo de vida Celulose Fermentação Hidrólise enzimática Lactic acid Life cycle assessment Cellulose Fermentation Enzymatic hydrolysis