Repository logo
 
Publication

Emotion classification based on single electrode brain data: applications for assistive technology

dc.contributor.authorRodrigues, Duarte
dc.contributor.authorReis, Luís Paulo
dc.contributor.authorFaria, Brígida Mónica
dc.contributor.authorFaria, Brígida Mónica
dc.date.accessioned2025-03-27T11:12:50Z
dc.date.available2025-03-27T11:12:50Z
dc.date.issued2023-12-08
dc.description.abstractThis research case focused on the development of an emotion classification system aimed to be integrated in projects committed to improve assistive technologies. An experimental protocol was designed to acquire an electroencephalogram (EEG) signal that translated a certain emotional state. To trigger this stimulus, a set of clips were retrieved from an extensive database of pre-labeled videos. Then, the signals were properly processed, in order to extract valuable features and patterns to train the machine and deep learning models.There were suggested 3 hypotheses for classification: recognition of 6 core emotions; distinguishing between 2 different emotions and recognising if the individual was being directly stimulated or merely processing the emotion. Results showed that the first classification task was a challenging one, because of sample size limitation. Nevertheless, good results were achieved in the second and third case scenarios (70% and 97% accuracy scores, respectively) through the application of a recurrent neural network.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationRodrigues, D., Reis, L. P., & Faria, B. M. (2023). Emotion classification based on single electrode bbrain data: Applications for assistive technology. Em P. Brito, J. G. Dias, B. Lausen, A. Montanari, & R. Nugent (Eds.), Classification and Data Science in the Digital Age (IFCS 2022) (pp. 323–331). Springer International Publishing. https://link.springer.com/chapter/10.1007/978-3-031-09034-9_35pt_PT
dc.identifier.eissn2198-3321
dc.identifier.isbn978-3-031-09033-2; EISBN: 978-3-031-09034-9
dc.identifier.issn1431-8814
dc.identifier.urihttp://hdl.handle.net/10400.22/29885
dc.language.isoengpt_PT
dc.peerreviewedyes
dc.publisherSpringer Naturept_PT
dc.relationUIDB/00027/2020; NORTE-01-0247- FEDER-039720
dc.relation.hasversionhttps://link.springer.com/chapter/10.1007/978-3-031-09034-9_35
dc.relation.publisherversionhttps://link.springer.com/chapter/10.1007/978-3-031-09034-9_35pt_PT
dc.rights.uriN/A
dc.subjectEmotionspt_PT
dc.subjectBrain-computer interfacept_PT
dc.subjectEEGpt_PT
dc.subjectSupervised learningpt_PT
dc.subjectMachine and deep learningpt_PT
dc.titleEmotion classification based on single electrode brain data: applications for assistive technologypt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.citation.endPage331pt_PT
oaire.citation.startPage323pt_PT
oaire.citation.titleClassification and Data Science in the Digital Age (IFCS 2022)pt_PT
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameFaria
person.givenNameBrigida Monica
person.identifierR-000-T1F
person.identifier.ciencia-id0D1F-FB5E-55E4
person.identifier.orcid0000-0003-2102-3407
person.identifier.ridC-6649-2012
person.identifier.scopus-author-id6506476517
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication85832a40-7ef9-431a-be0c-78b45ebbae86
relation.isAuthorOfPublication.latestForDiscovery85832a40-7ef9-431a-be0c-78b45ebbae86

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
COM_Brígida Faria 7.pdf
Size:
335.04 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: