Repository logo
 
Publication

Machine Learning Algorithms at Myocardial Perfusion Imaging - a Preliminary Study

dc.contributor.authorVieira, Domingos
dc.contributor.authorSilva, Emanuel
dc.contributor.authorMachado, Maria
dc.contributor.authorCunha, Lídia
dc.contributor.authorMetello, Luís F.
dc.date.accessioned2015-01-30T15:35:21Z
dc.date.available2015-01-30T15:35:21Z
dc.date.issued2010-10-30
dc.description.abstractA major focus of data mining process - especially machine learning researches - is to automatically learn to recognize complex patterns and help to take the adequate decisions strictly based on the acquired data. Since imaging techniques like MPI – Myocardial Perfusion Imaging on Nuclear Cardiology, can implicate a huge part of the daily workflow and generate gigabytes of data, there could be advantages on Computerized Analysis of data over Human Analysis: shorter time, homogeneity and consistency, automatic recording of analysis results, relatively inexpensive, etc.en
dc.identifier.urihttp://hdl.handle.net/10400.22/5558
dc.language.isoengpor
dc.peerreviewedyespor
dc.titleMachine Learning Algorithms at Myocardial Perfusion Imaging - a Preliminary Studypor
dc.typeconference object
dspace.entity.typePublication
oaire.citation.conferencePlaceNationalpor
oaire.citation.title3rd Health Informatics Symposium 2010por
person.familyNameCunha
person.givenNameLídia
person.identifier.ciencia-id991E-B484-9248
person.identifier.orcid0000-0002-4094-700X
person.identifier.orcid0000-0002-9260-8093
rcaap.rightsopenAccesspor
rcaap.typeconferenceObjectpor
relation.isAuthorOfPublication9503d68a-7431-4e6a-bc8a-315592daa71f
relation.isAuthorOfPublicationed51e8c5-a1c2-40e6-b976-57af77446e1b
relation.isAuthorOfPublication.latestForDiscovery9503d68a-7431-4e6a-bc8a-315592daa71f

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
COM_MetelloLF_2010.pdf
Size:
332.43 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: