Repository logo
 
Publication

A 2020 perspective on “Online guest profiling and hotel recommendation”

dc.contributor.authorVeloso, Bruno M.
dc.contributor.authorLeal, Fátima
dc.contributor.authorMalheiro, Benedita
dc.contributor.authorBurguillo, Juan Carlos
dc.date.accessioned2020-02-17T15:05:41Z
dc.date.embargo2119
dc.date.issued2020
dc.description.abstractTourism crowdsourcing platforms accumulate and use large volumes of feedback data on tourism-related services to provide personalized recommendations with high impact on future tourist behavior. Typically, these recommendation engines build individual tourist profiles and suggest hotels, restaurants, attractions or routes based on the shared ratings, reviews, photos, videos or likes. Due to the dynamic nature of this scenario, where the crowd produces a continuous stream of events, we have been exploring stream-based recommendation methods, using stochastic gradient descent (SGD), to incrementally update the prediction models and post-filters to reduce the search space and improve the recommendation accuracy. In this context, we offer an update and comment on our previous article (Veloso et al., 2019a) by providing a recent literature review and identifying the challenges laying ahead concerning the online recommendation of tourism resources supported by crowdsourced data.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1016/j.elerap.2020.100957pt_PT
dc.identifier.issn1567-4223
dc.identifier.urihttp://hdl.handle.net/10400.22/15482
dc.language.isoengpt_PT
dc.publisherElsevierpt_PT
dc.relation.publisherversionhttps://doi.org/10.1016/j.elerap.2020.100957pt_PT
dc.subjectData stream miningpt_PT
dc.subjectProfilingpt_PT
dc.subjectRecommendationpt_PT
dc.subjectPost-filteringpt_PT
dc.titleA 2020 perspective on “Online guest profiling and hotel recommendation”pt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.startPage100957pt_PT
oaire.citation.titleElectronic Commerce Research and Applicationspt_PT
person.familyNameBENEDITA CAMPOS NEVES MALHEIRO
person.givenNameMARIA
person.identifier.ciencia-id7A15-08FC-4430
person.identifier.orcid0000-0001-9083-4292
rcaap.rightsclosedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationbabd4fda-654a-4b59-952d-6113eebbb308
relation.isAuthorOfPublication.latestForDiscoverybabd4fda-654a-4b59-952d-6113eebbb308

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ART_LSA_MBM_2019.pdf
Size:
205.72 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: