Logo do repositório
 
Miniatura indisponível
Publicação

A 2020 perspective on “Online guest profiling and hotel recommendation”

Utilize este identificador para referenciar este registo.
Nome:Descrição:Tamanho:Formato: 
ART_LSA_MBM_2019.pdf205.72 KBAdobe PDF Ver/Abrir

Orientador(es)

Resumo(s)

Tourism crowdsourcing platforms accumulate and use large volumes of feedback data on tourism-related services to provide personalized recommendations with high impact on future tourist behavior. Typically, these recommendation engines build individual tourist profiles and suggest hotels, restaurants, attractions or routes based on the shared ratings, reviews, photos, videos or likes. Due to the dynamic nature of this scenario, where the crowd produces a continuous stream of events, we have been exploring stream-based recommendation methods, using stochastic gradient descent (SGD), to incrementally update the prediction models and post-filters to reduce the search space and improve the recommendation accuracy. In this context, we offer an update and comment on our previous article (Veloso et al., 2019a) by providing a recent literature review and identifying the challenges laying ahead concerning the online recommendation of tourism resources supported by crowdsourced data.

Descrição

Palavras-chave

Data stream mining Profiling Recommendation Post-filtering

Contexto Educativo

Citação

Projetos de investigação

Unidades organizacionais

Fascículo

Editora

Elsevier

Licença CC

Métricas Alternativas