Repository logo
 
Loading...
Thumbnail Image
Publication

Transformer-based deep learning models for retail forecasting

Use this identifier to reference this record.
Name:Description:Size:Format: 
Ricardo_Caetano_MBIA_2024.pdf2.87 MBAdobe PDF Download

Abstract(s)

Esta dissertação explora o desempenho de modelos avançados baseados em Transformer para a previsão de séries temporais, com o objetivo de colmatar a lacuna entre os avanços teóricos e as suas aplicações práticas no mundo real. Utilizando o conjunto de dados da competição M5 - que contém mais de 30.000 séries temporais derivadas de dados de vendas em várias categorias de produtos e regiões geográficas -este estudo compara seis modelos Transformer principais: Vanilla Transformer, Autoformer, ETSFormer, Informer, NSTransformer e Reformer. A avaliação foca-se naprecisão da previsão, eficiência computacional e robustez, todos fatores críticos para a implementação prática em ambientes reais. O estudo segue uma abordagem sistemática que envolve uma análise aprofundada das variáveis explicativas, técnicas de pré-processamento e uma afinação extensiva dos hiperparâmetros. Foram utilizadas estratégias avançadas de otimização para identificar as configurações ótimas dos modelos, garantindo um equilíbrio entre o desempenho preditivo e as exigências computacionais. Os modelos foram avaliados com base em métricas tradicionais de previsão pontual, como o Mean Absolute Scaled Error e o Normalized Root Mean Squared Error, juntamente com métricas probabilísticas como a Mean Weighted Quantile Loss e a Mean Absolute Error Coverage, de forma a captar tanto a precisão preditiva como a capacidade dos modelos para gerir a incerteza. Os resultados evidenciam avanços significativos na precisão e robustez dos modelos baseados em Transformer. Os modelos Vanilla Transformer, NSTransformer e ETSformer destacaram-se pela sua capacidade de captar padrões temporais complexos, sem dados adicionais. A análise enfatiza ainda o papel crucial da incorporação de variáveis explicativas e da afinação dos hiperparâmetros para a melhoria dos resultados dos modelos. Foram examinados, os compromissos entre a complexidade do modelo e a eficiência computacional, proporcionando uma perspetiva detalhada sobre a viabilidade prática de implementar estes modelos em contextos operacionais de larga escala. Em última análise, esta investigação oferece uma visão abrangente dos pontos fortes e dos desafios dos modelos Transformer na previsão de séries temporais.

Description

Keywords

Transformer models Retail forecasting Deep learning Time series analysis Modelos transformers Previsão de retalho Análise de séries temporais

Citation

Research Projects

Organizational Units

Journal Issue

Publisher

CC License

Without CC licence