Name: | Description: | Size: | Format: | |
---|---|---|---|---|
10.64 MB | Adobe PDF |
Advisor(s)
Abstract(s)
As exigências regulamentares, em conjunto com as preocupações sociais com os
aspetos e impactos ambientais, bem como o comprometimento da UE, para atingir a
neutralidade carbónica até 2050 e redução da emissão de gases poluentes, tem motivado
fortemente a proliferação dos Veículos Elétricos (VE). Apesar das inúmeras vantagens
associadas aos VEs, é de notar que a estrutura das infraestruturas elétricas ainda não está
suficientemente habilitada para fornecer energia a todos os veículos, com o constante
crescimento dos VEs e substituição dos veículos a combustão. Por outro lado, os VEs ainda
apresentam autonomias bastante baixas. Neste sentido torna-se essencial o desenvolvimento
de novas infraestruturas de carregamento, para acompanhar o constante crescimento e que
uma boa parte das infraestruturas permita carregamento rápido, de modo a contrabalançar, o
problema da autonomia e dos tempos de espera e carregamento associados a estes veículos.
Neste sentido a presente dissertação, visa primeiramente efetuar uma contextualização do
tema, com a apresentação dos diferentes tipos de carregadores e modos de carregamento que
a IEC 61851 estabelece, assim como, analisar diferentes soluções comerciais de diferentes
fabricantes, as diferentes cadeias de conversão associadas aos carregadores, apresentação de
algumas topologias de conversores DC/DC isolados utilizadas neste âmbito e seleção do
conversor a ser utilizado na segunda parte do trabalho. Esta segunda parte encarregará o
desenvolvimento do modelo matemático e elétrico do conversor, bem como a criação de um
programa de controlo do mesmo no software DAVE, o estudo do controlo em malha aberta
do conversor e desenvolvimento do modelo físico e real. Esta segunda parte também engloba
o desenvolvimento e utilização de modelos de simulação para o controlo em malha fechada
do conversor, bem como a implementação de alguns testes práticos face aos componentes
utilizados.
Regulatory requirements, together with social concerns about environmental aspects and impacts, as well as the EU's commitment to achieve carbon neutrality by 2050 and reduce the emission of polluting gases, has strongly motivated the proliferation of Electric Vehicles (EVs). Despite the numerous advantages associated with EVs, it should be noted that the electrical infrastructure is still not sufficiently capable to supply energy to all vehicles, with the constant growth of EVs and replacement of combustion vehicles. On the other hand, EVs still have very low ranges. In this sense, it becomes essential to develop new charging infrastructures, to keep up with the constant growth and that a good part of the infrastructures allow fast charging, to solve the electric range problem, as well as the charging and waiting times associated with these vehicles. In this sense, the present dissertation aims, firstly, to contextualize the theme, with the presentation of the different types of chargers and charging modes that IEC 61851 establishes, as well as, to analyze different commercial solutions from different manufacturers, the different conversion chains associated with the chargers, presentation of some topologies of isolated DC/DC converters used in this scope and selection of the converter to be used in the second part of the work. This second part will oversee the development of the mathematical and electrical model of the converter, as well as the creation of a control program for it in the DAVE software, the study of the open-loop control of the converter and the development of the physical and real model. This second part also includes the development of simulation models for the closed loop control of the converter, as well as the implementation of some practical tests, using the converter physical model components.
Regulatory requirements, together with social concerns about environmental aspects and impacts, as well as the EU's commitment to achieve carbon neutrality by 2050 and reduce the emission of polluting gases, has strongly motivated the proliferation of Electric Vehicles (EVs). Despite the numerous advantages associated with EVs, it should be noted that the electrical infrastructure is still not sufficiently capable to supply energy to all vehicles, with the constant growth of EVs and replacement of combustion vehicles. On the other hand, EVs still have very low ranges. In this sense, it becomes essential to develop new charging infrastructures, to keep up with the constant growth and that a good part of the infrastructures allow fast charging, to solve the electric range problem, as well as the charging and waiting times associated with these vehicles. In this sense, the present dissertation aims, firstly, to contextualize the theme, with the presentation of the different types of chargers and charging modes that IEC 61851 establishes, as well as, to analyze different commercial solutions from different manufacturers, the different conversion chains associated with the chargers, presentation of some topologies of isolated DC/DC converters used in this scope and selection of the converter to be used in the second part of the work. This second part will oversee the development of the mathematical and electrical model of the converter, as well as the creation of a control program for it in the DAVE software, the study of the open-loop control of the converter and the development of the physical and real model. This second part also includes the development of simulation models for the closed loop control of the converter, as well as the implementation of some practical tests, using the converter physical model components.
Description
Keywords
Dual-Active Bridge (DAB) Electric Vehicles (EVs) Fast Charging Isolated DC/DC Converters Phase-Shift Off-board Chargers