Publication
Residential load shifting in demand response events for bill reduction using a genetic algorithm
dc.contributor.author | Mota, Bruno | |
dc.contributor.author | Faria, Pedro | |
dc.contributor.author | Vale, Zita | |
dc.date.accessioned | 2022-12-21T11:08:36Z | |
dc.date.available | 2022-12-21T11:08:36Z | |
dc.date.issued | 2022 | |
dc.description.abstract | Flexible demand management for residential load scheduling, which considers constraints, such as load operating time window and order between them, is a key aspect in demand response. This paper aims to address constraints imposed on the operation schedule of appliances while also participating in demand response events. An innovative crossover method of genetic algorithms is proposed, implemented, and validated. The proposed solution considers distributed generation, dynamic pricing, and load shifting to minimize energy costs, reducing the electricity bill. A case study using real household workload data is presented, where four appliances are scheduled for five days, and three different scenarios are explored. The implemented genetic algorithm achieved up to 15% in bill reduction, in different scenarios, when compared to business as usual. | pt_PT |
dc.description.sponsorship | This work has received funding from FEDER Funds through COMPETE program and from National Funds through (FCT) under the project PRECISE (PTDC/EEI-EEE/6277/2020), and CEECIND/01423/2021. The authors acknowledge the work facilities and equipment provided by GECAD research center (UIDB/00760/2020) to the project team. | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.doi | 10.1016/j.energy.2022.124978 | pt_PT |
dc.identifier.uri | http://hdl.handle.net/10400.22/21220 | |
dc.language.iso | eng | pt_PT |
dc.peerreviewed | yes | pt_PT |
dc.publisher | Elsevier | pt_PT |
dc.relation | CEECIND/01423/2021 | pt_PT |
dc.relation | PRECISE - Power and Energy Cyber-Physical Solutions with Explainable Semantic Learning | |
dc.relation | Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development | |
dc.relation.publisherversion | https://www.sciencedirect.com/science/article/pii/S0360544222018771#! | pt_PT |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | pt_PT |
dc.subject | Demand response | pt_PT |
dc.subject | Distributed generation | pt_PT |
dc.subject | Flexibility | pt_PT |
dc.subject | Genetic algorithm | pt_PT |
dc.subject | Load shifting | pt_PT |
dc.title | Residential load shifting in demand response events for bill reduction using a genetic algorithm | pt_PT |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.awardTitle | PRECISE - Power and Energy Cyber-Physical Solutions with Explainable Semantic Learning | |
oaire.awardTitle | Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/3599-PPCDT/PTDC%2FEEI-EEE%2F6277%2F2020/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00760%2F2020/PT | |
oaire.citation.startPage | 124978 | pt_PT |
oaire.citation.title | Energy | pt_PT |
oaire.citation.volume | 260 | pt_PT |
oaire.fundingStream | 3599-PPCDT | |
oaire.fundingStream | 6817 - DCRRNI ID | |
person.familyName | Mota | |
person.familyName | Faria | |
person.familyName | Vale | |
person.givenName | Bruno | |
person.givenName | Pedro | |
person.givenName | Zita | |
person.identifier | 632184 | |
person.identifier.ciencia-id | 6019-8D23-F05A | |
person.identifier.ciencia-id | B212-2309-F9C3 | |
person.identifier.ciencia-id | 721B-B0EB-7141 | |
person.identifier.orcid | 0000-0002-9875-4868 | |
person.identifier.orcid | 0000-0002-5982-8342 | |
person.identifier.orcid | 0000-0002-4560-9544 | |
person.identifier.rid | A-5824-2012 | |
person.identifier.scopus-author-id | 7004115775 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | article | pt_PT |
relation.isAuthorOfPublication | 11d36edf-a3a4-4e64-86e8-4e68ee0943b9 | |
relation.isAuthorOfPublication | 35e6a4ab-f644-4bc5-b6fc-9fd89c23d6c6 | |
relation.isAuthorOfPublication | ff1df02d-0c0f-4db1-bf7d-78863a99420b | |
relation.isAuthorOfPublication.latestForDiscovery | 11d36edf-a3a4-4e64-86e8-4e68ee0943b9 | |
relation.isProjectOfPublication | 3ac72a7d-ef8c-41d5-82da-fb84eb82b180 | |
relation.isProjectOfPublication | db3e2edb-b8af-487a-b76a-f6790ac2d86e | |
relation.isProjectOfPublication.latestForDiscovery | 3ac72a7d-ef8c-41d5-82da-fb84eb82b180 |