Repository logo
 
Publication

Residential load shifting in demand response events for bill reduction using a genetic algorithm

dc.contributor.authorMota, Bruno
dc.contributor.authorFaria, Pedro
dc.contributor.authorVale, Zita
dc.date.accessioned2022-12-21T11:08:36Z
dc.date.available2022-12-21T11:08:36Z
dc.date.issued2022
dc.description.abstractFlexible demand management for residential load scheduling, which considers constraints, such as load operating time window and order between them, is a key aspect in demand response. This paper aims to address constraints imposed on the operation schedule of appliances while also participating in demand response events. An innovative crossover method of genetic algorithms is proposed, implemented, and validated. The proposed solution considers distributed generation, dynamic pricing, and load shifting to minimize energy costs, reducing the electricity bill. A case study using real household workload data is presented, where four appliances are scheduled for five days, and three different scenarios are explored. The implemented genetic algorithm achieved up to 15% in bill reduction, in different scenarios, when compared to business as usual.pt_PT
dc.description.sponsorshipThis work has received funding from FEDER Funds through COMPETE program and from National Funds through (FCT) under the project PRECISE (PTDC/EEI-EEE/6277/2020), and CEECIND/01423/2021. The authors acknowledge the work facilities and equipment provided by GECAD research center (UIDB/00760/2020) to the project team.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1016/j.energy.2022.124978pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/21220
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherElsevierpt_PT
dc.relationCEECIND/01423/2021pt_PT
dc.relationPRECISE - Power and Energy Cyber-Physical Solutions with Explainable Semantic Learning
dc.relationResearch Group on Intelligent Engineering and Computing for Advanced Innovation and Development
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0360544222018771#!pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectDemand responsept_PT
dc.subjectDistributed generationpt_PT
dc.subjectFlexibilitypt_PT
dc.subjectGenetic algorithmpt_PT
dc.subjectLoad shiftingpt_PT
dc.titleResidential load shifting in demand response events for bill reduction using a genetic algorithmpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitlePRECISE - Power and Energy Cyber-Physical Solutions with Explainable Semantic Learning
oaire.awardTitleResearch Group on Intelligent Engineering and Computing for Advanced Innovation and Development
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/3599-PPCDT/PTDC%2FEEI-EEE%2F6277%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00760%2F2020/PT
oaire.citation.startPage124978pt_PT
oaire.citation.titleEnergypt_PT
oaire.citation.volume260pt_PT
oaire.fundingStream3599-PPCDT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameMota
person.familyNameFaria
person.familyNameVale
person.givenNameBruno
person.givenNamePedro
person.givenNameZita
person.identifier632184
person.identifier.ciencia-id6019-8D23-F05A
person.identifier.ciencia-idB212-2309-F9C3
person.identifier.ciencia-id721B-B0EB-7141
person.identifier.orcid0000-0002-9875-4868
person.identifier.orcid0000-0002-5982-8342
person.identifier.orcid0000-0002-4560-9544
person.identifier.ridA-5824-2012
person.identifier.scopus-author-id7004115775
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication11d36edf-a3a4-4e64-86e8-4e68ee0943b9
relation.isAuthorOfPublication35e6a4ab-f644-4bc5-b6fc-9fd89c23d6c6
relation.isAuthorOfPublicationff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isAuthorOfPublication.latestForDiscovery11d36edf-a3a4-4e64-86e8-4e68ee0943b9
relation.isProjectOfPublication3ac72a7d-ef8c-41d5-82da-fb84eb82b180
relation.isProjectOfPublicationdb3e2edb-b8af-487a-b76a-f6790ac2d86e
relation.isProjectOfPublication.latestForDiscovery3ac72a7d-ef8c-41d5-82da-fb84eb82b180

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ART_GECAD_2022.pdf
Size:
9.47 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: