Repository logo
 
Publication

Analysis and prediction of hotel ratings from crowdsourced data

dc.contributor.authorLeal, Fátima
dc.contributor.authorMalheiro, Benedita
dc.contributor.authorBurguillo, Juan Carlos
dc.date.accessioned2019-03-12T16:43:42Z
dc.date.embargo2119
dc.date.issued2018
dc.date.updated2019-03-08T15:49:38Z
dc.description.abstractCrowdsourcing has become an essential source of information for tourism stakeholders. Every day, tourists leave large volumes of feedback data in the form of posts, likes, textual reviews, and ratings in dedicated crowdsourcing platforms. This behavior makes the analysis of crowdsourced information strategic, allowing the discovery of important knowledge regarding tourists and tourism resources. This paper presents a survey on the analysis and prediction of hotel ratings from crowdsourced data, covering both off‐line (batch) and on‐line (stream‐based) processing. Specifically, it reports multiple rating‐based profiling, recommendation, and evaluation techniques. While most of the surveyed works adopt entity‐based multicriteria profiling, prerecommendation filtering, and off‐line processing, the latest hotel rating prediction trends include feature‐based, trust and reputation modeling, postrecommendation filtering, and on‐line processing. Additionally, since the volume of crowdsourced ratings tends to increase, the deployment of profiling and recommendation algorithms on high‐performance computing resources should be further explored.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier1942-4787en_US
dc.identifier.citationFátima Leal; Benedita Malheiro; Juan Carlos Burguillo. Analysis and prediction of hotel ratings from crowdsourced data, Wiley Interdisciplinary Reviews: 9, 2, e1296-e1296, 2018.pt_PT
dc.identifier.doi10.1002/widm.1296pt_PT
dc.identifier.issn1942-4787
dc.identifier.urihttp://hdl.handle.net/10400.22/12975
dc.language.isoengpt_PT
dc.publisherWileypt_PT
dc.relation.publisherversionhttps://onlinelibrary.wiley.com/doi/full/10.1002/widm.1296pt_PT
dc.subjectCrowdsourcingpt_PT
dc.subjectProfilingpt_PT
dc.subjectRecommendationpt_PT
dc.subjectTrustworthinesspt_PT
dc.titleAnalysis and prediction of hotel ratings from crowdsourced datapt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.titleData Mining and Knowledge Discoverypt_PT
person.familyNameBENEDITA CAMPOS NEVES MALHEIRO
person.givenNameMARIA
person.identifier.ciencia-id7A15-08FC-4430
person.identifier.orcid0000-0001-9083-4292
rcaap.rightsclosedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationbabd4fda-654a-4b59-952d-6113eebbb308
relation.isAuthorOfPublication.latestForDiscoverybabd4fda-654a-4b59-952d-6113eebbb308

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ART_LSA_Malheiro_2019.pdf
Size:
973.79 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: