Repository logo
 
Publication

Electric vehicles local flexibility strategies for congestion relief on distribution networks

dc.contributor.authorSoares, João
dc.contributor.authorAlmeida, José
dc.contributor.authorGomes, Lucas
dc.contributor.authorCanizes, Bruno
dc.contributor.authorVale, Zita
dc.contributor.authorNeto, Edison
dc.date.accessioned2023-02-01T15:06:08Z
dc.date.available2023-02-01T15:06:08Z
dc.date.issued2022
dc.description.abstractDue to the rising concern for the environment and sustainability issues, the transportation system is experiencing important changes to its paradigm, with the increasing replacement of internal combustion vehicles by electric ones. Consequently, the electric systems need to adapt to the ever-increasing load demand from the grid and the challenge to identify driving patterns in electric vehicle users’ behavior. To prepare the grid for these changes, it is necessary to study the behavior of EV users and develop strategies to cope with the growing demand for electric vehicles. Knowing that electric vehicles experience long-parked periods at the charging stations (more than necessary to fully recharge the battery), this research paper proposes an EV charging strategy that intelligently explores these long-parked times. It interrupts charging of EVs that have enough charge to start their trip from certain charging stations to alleviate problems in the network in exchange for a certain incentive. This methodology is then applied in a realistic smart city to investigate its application. The results show that the proposed methodology brings benefits to the distribution network to relieve line congestion and improve the voltage magnitude at the network buses.pt_PT
dc.description.sponsorshipThis research has received funding from FEDER funds through the Operational Program for Competitiveness and Internationalization (COMPETE 2020), under Project POCI-01-0145-FEDER-028983; by National Funds through the FCT Portuguese Foundation for Science and Technology, under PTDC/EEI-EEE/28983/2017 (CENERGETIC), UIDB/00760/2020; Joao Soares is also supported by CEECIND/02814/2017 FCT grant.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1016/j.egyr.2022.01.036pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/22074
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherElsevierpt_PT
dc.relationPOCI-01-0145-FEDER-028983pt_PT
dc.relationResearch Group on Intelligent Engineering and Computing for Advanced Innovation and Development
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S2352484722000361?via%3Dihubpt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectDistribution systempt_PT
dc.subjectElectric vehiclespt_PT
dc.subjectFlexibility strategiespt_PT
dc.subjectSmart chargingpt_PT
dc.titleElectric vehicles local flexibility strategies for congestion relief on distribution networkspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleResearch Group on Intelligent Engineering and Computing for Advanced Innovation and Development
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/9471 - RIDTI/PTDC%2FEEI-EEE%2F28983%2F2017/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00760%2F2020/PT
oaire.citation.endPage69pt_PT
oaire.citation.startPage62pt_PT
oaire.citation.titleEnergy Reportspt_PT
oaire.citation.volume8pt_PT
oaire.fundingStream9471 - RIDTI
oaire.fundingStream6817 - DCRRNI ID
person.familyNameSoares
person.familyNameAlmeida
person.familyNameCanizes
person.familyNameVale
person.givenNameJoão
person.givenNameJosé
person.givenNameBruno
person.givenNameZita
person.identifier1043580
person.identifier632184
person.identifier.ciencia-id1612-8EA8-D0E8
person.identifier.ciencia-idC017-775D-9F55
person.identifier.ciencia-idA411-F561-E922
person.identifier.ciencia-id721B-B0EB-7141
person.identifier.orcid0000-0002-4172-4502
person.identifier.orcid0000-0002-9504-0501
person.identifier.orcid0000-0002-9808-5537
person.identifier.orcid0000-0002-4560-9544
person.identifier.ridI-3492-2017
person.identifier.ridA-5824-2012
person.identifier.scopus-author-id35436109600
person.identifier.scopus-author-id35408699300
person.identifier.scopus-author-id7004115775
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication9ece308b-6d79-4cec-af91-f2278dcc47eb
relation.isAuthorOfPublication119ecfd0-1484-4157-911c-7632f2fc56c0
relation.isAuthorOfPublication7ea215ea-79d5-42be-a870-a0c8b23cf556
relation.isAuthorOfPublicationff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isAuthorOfPublication.latestForDiscovery119ecfd0-1484-4157-911c-7632f2fc56c0
relation.isProjectOfPublication6615f0c1-4abc-48fc-ac0a-fce560b02403
relation.isProjectOfPublicationdb3e2edb-b8af-487a-b76a-f6790ac2d86e
relation.isProjectOfPublication.latestForDiscoverydb3e2edb-b8af-487a-b76a-f6790ac2d86e

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ART17_GECAD_ZAV_2022.pdf
Size:
819.26 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: