Repository logo
 
Publication

Multi-agent optimization of electricity markets participation portfolio with NPSO-LRS

dc.contributor.authorFaia, Ricardo
dc.contributor.authorPinto, Tiago
dc.contributor.authorVale, Zita
dc.contributor.authorCorchado, Manuel
dc.date.accessioned2021-09-22T15:33:24Z
dc.date.available2021-09-22T15:33:24Z
dc.date.issued2018
dc.description.abstractThe increasing unpredictability of electricity market prices as reflection of the renewable generation variability brings a new dimension to risk formulation, since market participation risk should consider the prices variation in each market. This paper proposes a new portfolio optimization model, considering a new approach for risk management. The problem of electricity allocation between different markets is formulated as a classic portfolio optimization problem with the consideration of the market prices forecast error as integral part of the risk asset. The multi-objective problem leads, however, to a heavy computational burden, and for this reason the method of weighting singlecriterion objectives is applied in this paper. A particle swarm optimizationbased metaheuristic is applied in order to enable decreasing the execution time of the optimization, while guaranteeing a good quality of results. A case study based on real data from the Iberian electricity market demonstrates the advantages of the proposed approach to increase market players’ profits while minimizing the market participation riskpt_PT
dc.description.sponsorshipThis work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 641794 (project DREAM-GO) and grant agreement No 703689 (project ADAPT)pt_PT
dc.description.versionN/Apt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/18492
dc.language.isoengpt_PT
dc.relationEnabling Demand Response for short and real-time Efficient And Market Based smart Grid Operation - An intelligent and real-time simulation approach
dc.relationAdaptive Decision support for Agents negotiation in electricity market and smart grid Power Transactions
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectAgent-based simulationpt_PT
dc.subjectDecision supportpt_PT
dc.subjectElectricity marketspt_PT
dc.subjectPortfolio optimizationpt_PT
dc.subjectSwarm Intelligencept_PT
dc.titleMulti-agent optimization of electricity markets participation portfolio with NPSO-LRSpt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.awardTitleEnabling Demand Response for short and real-time Efficient And Market Based smart Grid Operation - An intelligent and real-time simulation approach
oaire.awardTitleAdaptive Decision support for Agents negotiation in electricity market and smart grid Power Transactions
oaire.awardURIinfo:eu-repo/grantAgreement/EC/H2020/641794/EU
oaire.awardURIinfo:eu-repo/grantAgreement/EC/H2020/703689/EU
oaire.citation.titleInternational Workshop on Optimization in Multiagent Systems 2018 (OptMAS-18)pt_PT
oaire.fundingStreamH2020
oaire.fundingStreamH2020
person.familyNameFaia
person.familyNamePinto
person.familyNameVale
person.givenNameRicardo Francisco Marcos
person.givenNameTiago
person.givenNameZita
person.identifier78FtZwIAAAAJ
person.identifierR-000-T7J
person.identifier632184
person.identifier.ciencia-id9B12-19F6-D6C7
person.identifier.ciencia-id2414-9B03-C4BB
person.identifier.ciencia-id721B-B0EB-7141
person.identifier.orcid0000-0002-1053-7720
person.identifier.orcid0000-0001-8248-080X
person.identifier.orcid0000-0002-4560-9544
person.identifier.ridT-2245-2018
person.identifier.ridA-5824-2012
person.identifier.scopus-author-id35219107600
person.identifier.scopus-author-id7004115775
project.funder.identifierhttp://doi.org/10.13039/501100008530
project.funder.identifierhttp://doi.org/10.13039/501100008530
project.funder.nameEuropean Commission
project.funder.nameEuropean Commission
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication5866fe1d-e5f9-42fb-a7c8-e35a23d6a6ce
relation.isAuthorOfPublication8d58ddc0-1023-47c0-a005-129d412ce98d
relation.isAuthorOfPublicationff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isAuthorOfPublication.latestForDiscovery8d58ddc0-1023-47c0-a005-129d412ce98d
relation.isProjectOfPublication4a092e97-cc2f-4f57-8d3c-cf1709963516
relation.isProjectOfPublication0659ce55-4ace-4540-b5e4-06dea6a17510
relation.isProjectOfPublication.latestForDiscovery4a092e97-cc2f-4f57-8d3c-cf1709963516

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
COM_GECAD_OptMAS-18_2018.pdf
Size:
405.58 KB
Format:
Adobe Portable Document Format