Repository logo
 
Publication

Enhanced Multi-Objective Energy Optimization by a Signaling Method

dc.contributor.authorSoares, João
dc.contributor.authorBorges, Nuno
dc.contributor.authorVale, Zita
dc.contributor.authorOliveira, P.B. de Moura
dc.date.accessioned2017-01-25T10:01:09Z
dc.date.available2017-01-25T10:01:09Z
dc.date.issued2016
dc.description.abstractIn this paper three metaheuristics are used to solve a smart grid multi-objective energy management problem with conflictive design: how to maximize profits and minimize carbon dioxide (CO2) emissions, and the results compared. The metaheuristics implemented are: weighted particle swarm optimization (W-PSO), multi-objective particle swarm optimization (MOPSO) and non-dominated sorting genetic algorithm II (NSGA-II). The performance of these methods with the use of multi-dimensional signaling is also compared with this technique, which has previously been shown to boost metaheuristics performance for single-objective problems. Hence, multi-dimensional signaling is adapted and implemented here for the proposed multi-objective problem. In addition, parallel computing is used to mitigate the methods’ computational execution time. To validate the proposed techniques, a realistic case study for a chosen area of the northern region of Portugal is considered, namely part of Vila Real distribution grid (233-bus). It is assumed that this grid is managed by an energy aggregator entity, with reasonable amount of electric vehicles (EVs), several distributed generation (DG), customers with demand response (DR) contracts and energy storage systems (ESS). The considered case study characteristics took into account several reported research works with projections for 2020 and 2050. The findings strongly suggest that the signaling method clearly improves the results and the Pareto front region quality.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.3390/en9100807pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/9378
dc.language.isoengpt_PT
dc.publisherMDPIpt_PT
dc.relation.ispartofseriesEnergies;Vol. 9, Issue 10
dc.relation.publisherversionhttp://www.mdpi.com/1996-1073/9/10/807pt_PT
dc.subjectElectric vehicle (EV)pt_PT
dc.subjectEmissionspt_PT
dc.subjectEnergy resources management (ERM)pt_PT
dc.subjectMulti-objective optimizationpt_PT
dc.subjectVirtual power player (VPP)pt_PT
dc.subjectSmart gridpt_PT
dc.titleEnhanced Multi-Objective Energy Optimization by a Signaling Methodpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage23pt_PT
oaire.citation.issue10pt_PT
oaire.citation.startPage1pt_PT
oaire.citation.titleEnergiespt_PT
oaire.citation.volume9pt_PT
person.familyNameSoares
person.familyNameVale
person.givenNameJoão
person.givenNameZita
person.identifier1043580
person.identifier632184
person.identifier.ciencia-id1612-8EA8-D0E8
person.identifier.ciencia-id721B-B0EB-7141
person.identifier.orcid0000-0002-4172-4502
person.identifier.orcid0000-0002-4560-9544
person.identifier.ridA-5824-2012
person.identifier.scopus-author-id35436109600
person.identifier.scopus-author-id7004115775
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication9ece308b-6d79-4cec-af91-f2278dcc47eb
relation.isAuthorOfPublicationff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isAuthorOfPublication.latestForDiscoveryff1df02d-0c0f-4db1-bf7d-78863a99420b

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ART_ZitaVale_GECAD_8_2016.pdf
Size:
4.81 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: