Repository logo
 
Publication

Selection of features in reinforcement learning applied to energy consumption forecast in buildings according to different contexts

dc.contributor.authorRamos, Daniel
dc.contributor.authorFaria, Pedro
dc.contributor.authorGomes, Luis
dc.contributor.authorCampos, P.
dc.contributor.authorVale, Zita
dc.date.accessioned2023-02-01T15:25:46Z
dc.date.available2023-02-01T15:25:46Z
dc.date.issued2022
dc.description.abstractThe management of buildings responsible for the energy storage and control can be optimized with the support of forecasting techniques. These are essential on the finding of load consumption patterns being these last involved in decisions that analyze which forecasting technique results in more accurate predictions in each context. This paper considers two forecasting methods known as artificial neural network and k-nearest neighbor involved in the prediction of consumption of a building composed by devices recording consumption and sensors data. The forecasts are performed in five minutes periods with the forecasting technique taken into account as a potential to improve the accuracy of predictions. The decision making considers the Multi-armed Bandit in reinforcement learning context to find the best suitable algorithm in each five minutes period thus improving the predictions accuracy in forecasting. The reinforcement learning has been tested in upper confidence bound and greedy algorithms with several exploration alternatives. In the case-study, three contexts have been analyzed.pt_PT
dc.description.sponsorshipThe present work has been developed under the EUREKA - ITEA3 Project (ITEA-18008), Project TIoCPS (ANI|P2020 POCI-01-0247-FEDER-046182), and has received funding from European Regional Development Fund through COMPETE 2020. The work has been done also in the scope of projects UIDB/00760/2020, CEECIND/02887/2017, financed by FEDER Funds through COMPETE program and National Funds through (FCT), Portugal.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1016/j.egyr.2022.01.047pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/22079
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherElsevierpt_PT
dc.relationANI|P2020 POCI-01-0247-FEDER-046182pt_PT
dc.relationResearch Group on Intelligent Engineering and Computing for Advanced Innovation and Development
dc.relationNot Available
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S2352484722000476?via%3Dihubpt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectEnergy managementpt_PT
dc.subjectLearningpt_PT
dc.subjectLoad forecastpt_PT
dc.subjectMulti-armed Banditpt_PT
dc.titleSelection of features in reinforcement learning applied to energy consumption forecast in buildings according to different contextspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleResearch Group on Intelligent Engineering and Computing for Advanced Innovation and Development
oaire.awardTitleNot Available
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00760%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/CEEC IND 2017/CEECIND%2F02887%2F2017%2FCP1417%2FCT0003/PT
oaire.citation.endPage429pt_PT
oaire.citation.startPage423pt_PT
oaire.citation.titleEnergy Reportspt_PT
oaire.citation.volume8pt_PT
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStreamCEEC IND 2017
person.familyNameFaria
person.familyNameVale
person.givenNamePedro
person.givenNameZita
person.identifier632184
person.identifier.ciencia-idB212-2309-F9C3
person.identifier.ciencia-id6F19-CB63-C8A8
person.identifier.ciencia-id721B-B0EB-7141
person.identifier.orcid0000-0002-5982-8342
person.identifier.orcid0000-0002-8597-3383
person.identifier.orcid0000-0002-4560-9544
person.identifier.ridA-5824-2012
person.identifier.scopus-author-id7004115775
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication35e6a4ab-f644-4bc5-b6fc-9fd89c23d6c6
relation.isAuthorOfPublicationeaac2304-a007-4531-8398-ee9f426c2f52
relation.isAuthorOfPublicationff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isAuthorOfPublication.latestForDiscoveryff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isProjectOfPublicationdb3e2edb-b8af-487a-b76a-f6790ac2d86e
relation.isProjectOfPublicatione9f5cdee-c0fb-4e2d-81bf-9316a3752526
relation.isProjectOfPublication.latestForDiscoverydb3e2edb-b8af-487a-b76a-f6790ac2d86e

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ART18_GECAD_ZAV_2022.pdf
Size:
979.41 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: