| Name: | Description: | Size: | Format: | |
|---|---|---|---|---|
| 4.2 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
A laparoscopia é uma técnica cirúrgica minimamente invasiva, amplamente usada em diversas intervenções. A eficácia destes procedimentos depende, em grande parte, da estabilidade dos instrumentos de acesso, os trocartes. Um dos principais desafios associados a estes dispositivos médicos é a força de retenção, responsável por manter a cânula estável após a sua inserção na parede abdominal. Com o objetivo de otimizar este parâmetro, foi desenvolvida uma cânula flexível de retenção automática no SolidWorks, combinando materiais biocompatíveis e técnicas de fabrico inovadoras. Para avaliar o desempenho do novo design, realizaram-se simulações pelo método de elementos finitos, modelando o ambiente clínico com a cânula inserida em tecidos simulados. Foram considerados dois modelos teciduais (1 - maior espessura de tecido adiposo e baixa tonicidade muscular; 2 - menor espessura de tecido adiposo e maior tonicidade muscular) e três modelos de cânula (lisa, de rosca e a desenvolvida neste projeto). As simulações incluíram condições de contacto realistas, atrito e forças aplicadas, avaliando-se os resultados tanto das cânulas como dos tecidos, a nível de stress, deformação,
deslocamento e, por fim, da força de retenção. Os resultados demonstraram que a cânula flexível desenvolvida apresentou a maior força de retenção, com 3,10 e 1,03 N para os modelos teciduais 1 e 2, respetivamente, superando a cânula de rosca (4,2x10-1 e 6,53x10-2 N) e a lisa (2,26x10-3 e 4,42x10-4 N). Os resultados indicaram
também que o novo design proporciona maior estabilidade e melhor adaptação aos tecidos, evidenciando o seu potencial para uma melhor segurança e eficácia. Este trabalho propõe e valida uma nova abordagem no design de trocartes através do desenvolvimento de uma cânula flexível. Contribui para a compreensão do seu comportamento mecânico, fornecendo bases sólidas para o desenvolvimento e contínua evolução de
procedimentos la laparoscópicos.
Laparoscopy is a minimally invasive surgical technique widely used in various procedures. The effectiveness of these procedures depends largely on the stability of the access instruments, known as trocars. One of the main challenges associated with these medical devices is the retention force, which is responsible for keeping the cannula stable after insertion into the abdominal wall. With the aim of optimizing this parameter, a flexible cannula with automatic retention was developed in SolidWorks, combining biocompatible materials and innovative manufacturing techniques. To evaluate the performance of the new design, simulations were performed using the finite element method, modeling the clinical environment with the cannula inserted into simulated tissues. Two tissue models were considered (1 - greater adipose tissue thickness and low muscle tone; 2 - lower adipose tissue thickness and greater muscle tone) and three cannula models (smooth, threaded, and the developed in this project). The simulations included realistic contact conditions, friction and applied forces, evaluating the results of both the cannulas and tissues in terms of stress, deformation, displacement and finally, retention force. The results showed that the flexible cannula developed had the highest retention force, with 3.10 and 1.03 N for tissue models 1 and 2, respectively, surpassing the threaded cannula (4.2x10-1 and 6.53x10-2 N) and the smooth cannula (2.26x10-3 and 4.42x10-4 N). The results also indicated that the new design provides greater stability and better adaptation to tissues, highlighting its potential for improved safety and effectiveness. This work proposes and validates a new approach to trocar design through the development of a flexible cannula. It contributes to the understanding of its mechanical behavior, providing a solid basis for the development and continuous evolution of laparoscopic procedures.
Laparoscopy is a minimally invasive surgical technique widely used in various procedures. The effectiveness of these procedures depends largely on the stability of the access instruments, known as trocars. One of the main challenges associated with these medical devices is the retention force, which is responsible for keeping the cannula stable after insertion into the abdominal wall. With the aim of optimizing this parameter, a flexible cannula with automatic retention was developed in SolidWorks, combining biocompatible materials and innovative manufacturing techniques. To evaluate the performance of the new design, simulations were performed using the finite element method, modeling the clinical environment with the cannula inserted into simulated tissues. Two tissue models were considered (1 - greater adipose tissue thickness and low muscle tone; 2 - lower adipose tissue thickness and greater muscle tone) and three cannula models (smooth, threaded, and the developed in this project). The simulations included realistic contact conditions, friction and applied forces, evaluating the results of both the cannulas and tissues in terms of stress, deformation, displacement and finally, retention force. The results showed that the flexible cannula developed had the highest retention force, with 3.10 and 1.03 N for tissue models 1 and 2, respectively, surpassing the threaded cannula (4.2x10-1 and 6.53x10-2 N) and the smooth cannula (2.26x10-3 and 4.42x10-4 N). The results also indicated that the new design provides greater stability and better adaptation to tissues, highlighting its potential for improved safety and effectiveness. This work proposes and validates a new approach to trocar design through the development of a flexible cannula. It contributes to the understanding of its mechanical behavior, providing a solid basis for the development and continuous evolution of laparoscopic procedures.
Description
Keywords
Laparoscopy Trocar Retention Force Flexible Cannula SolidWorks Finite Element Method Laparoscopia Trocarte Força de retenção Cânula flexível Método de Elementos Finitos
