Repository logo
 
Publication

Efficient multiscale methodology for local stress analysis of metallic railway bridges based on modal superposition principles

dc.contributor.authorHoras, Cláudio
dc.contributor.authorJesus, Abílio M.P. de
dc.contributor.authorRibeiro, Diogo
dc.contributor.authorCalçada, Rui
dc.date.accessioned2022-12-21T12:05:58Z
dc.date.available2022-12-21T12:05:58Z
dc.date.issued2022
dc.description.abstractThis paper presents an advanced submodelling methodology for local stress analysis of complex details of existing metallic railway bridges. The fatigue assessment of connections of large structures based on local methods leads inherently to a multiscale problem that can only be solved by adopting efficient numerical procedures. Aiming to overcome such limitations that influence the analysis process, submodelling techniques and modal superposition principles are combined to fully represent numerically the local geometrical, material and contact properties of the fatigue-critical details. The results of experimental in situ tests are proposed to characterise the numerical models and respective multiscale relation, implementing optimisation and validation procedures. In this work, the suggested efficient multiscale methodology for stress analysis aims to allow the subsequent local fatigue assessment, according to the real mechanism of loading transference, reducing sources of conservatism. All numerical procedures and respective validation thru experimental techniques are illustrated using a real case study.pt_PT
dc.description.sponsorshipThis work was financially supported by: Base Funding - UIDB/04708/2020 of the CONSTRUCT - Institute of R&D In Structures and Construction - funded by national funds through the FCT/MCTES (PIDDAC) and by national funds through FCT - Fundação para a Ciência e a Tecnologia; PD/BD/114101/2015. This work was also carried out in the framework of Shift2Rail projects IN2TRACK2 [826255-H2020-S2RJU-CFM-2018] and IN2TRACK3 [101012456-H2020-S2RJU-CFM-2020].pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1016/j.engfailanal.2022.106391pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/21228
dc.language.isoengpt_PT
dc.publisherElsevierpt_PT
dc.relationInstitute of R&D in Structures and Construction
dc.relationAdvanced tool for fatigue analysis and strengthening of metallic railway
dc.relationResearch into enhanced track and switch and crossing system 2
dc.relationIN2TRACK3
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S135063072200365Xpt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectRailway bridgespt_PT
dc.subjectRiveted jointspt_PT
dc.subjectFatiguept_PT
dc.subjectSubmodelling relationpt_PT
dc.subjectModal superpositionpt_PT
dc.subjectExperimental validationpt_PT
dc.titleEfficient multiscale methodology for local stress analysis of metallic railway bridges based on modal superposition principlespt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleInstitute of R&D in Structures and Construction
oaire.awardTitleAdvanced tool for fatigue analysis and strengthening of metallic railway
oaire.awardTitleResearch into enhanced track and switch and crossing system 2
oaire.awardTitleIN2TRACK3
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04708%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT//PD%2FBD%2F114101%2F2015/PT
oaire.awardURIinfo:eu-repo/grantAgreement/EC/H2020/826255/EU
oaire.awardURIinfo:eu-repo/grantAgreement/EC/H2020/101012456/EU
oaire.citation.startPage106391pt_PT
oaire.citation.titleEngineering Failure Analysispt_PT
oaire.citation.volume138pt_PT
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStreamH2020
oaire.fundingStreamH2020
person.familyNameHoras
person.familyNameRibeiro
person.givenNameCláudio
person.givenNameDiogo
person.identifier277594
person.identifier.ciencia-id6F12-AB5F-1250
person.identifier.ciencia-id2318-666E-AA75
person.identifier.orcid0000-0002-9868-3270
person.identifier.orcid0000-0001-8624-9904
person.identifier.scopus-author-id57191745461
person.identifier.scopus-author-id24476782300
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100008530
project.funder.identifierhttp://doi.org/10.13039/501100008530
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameEuropean Commission
project.funder.nameEuropean Commission
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationdd442fe5-70e4-4041-8fc9-192729591b70
relation.isAuthorOfPublicationb9d8c427-25f3-4ab7-b368-f9101b55b9a9
relation.isAuthorOfPublication.latestForDiscoveryb9d8c427-25f3-4ab7-b368-f9101b55b9a9
relation.isProjectOfPublicationb301f286-1b56-4c75-b9cf-e85edc77b88a
relation.isProjectOfPublication2801f27c-c419-41ef-bc56-12056a348ceb
relation.isProjectOfPublicationc5349b75-7fb9-4420-af71-dfbbfeb7bf51
relation.isProjectOfPublication9c4e9efb-e53f-4053-a2d8-8a54e781cd8b
relation.isProjectOfPublication.latestForDiscoveryb301f286-1b56-4c75-b9cf-e85edc77b88a

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ART_DEC_2022.pdf
Size:
25.14 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: