Repository logo
 
Publication

Development of a decision support system for freight forecasting

authorProfile.emailfaf@esht.ipp.pt
dc.contributor.authorMartins, João P.
dc.contributor.authorRamos, Filipe R.
dc.contributor.authorPereira, M. Teresa
dc.contributor.authorOliveira, Marisa
dc.contributor.authorFerreira, Fernanda A.
dc.date.accessioned2025-06-26T15:41:13Z
dc.date.available2025-06-26T15:41:13Z
dc.date.issued2025
dc.description.abstractThe transportation of goods is critical to supply chains, directly influencing efficiency, cost management, and competitiveness. Accurate freight cost forecasting is essential for decision-making, enabling businesses to allocate resources effectively, reduce financial uncertainties, and ensure timely deliveries. This study, conducted in the After-Sales department of a global company, aimed to analyse freight costs per shipment and develop a predictive system based on predefined parameters. Historical data were examined using analytical techniques and time series metrics to identify suitable forecasting methodologies. Specific algorithms, including classical methodologies (exponential smoothing models) and hybrid deep learning models (BJ-DNN model), were tested to evaluate predictive accuracy. Results showed prediction errors ranging from 17% to 56% for exponential smoothing models and from 5% to 27% for BJ-DNN models, demonstrating the superior performance of hybrid approaches. These findings emphasize the potential of predictive models to enhance freight cost forecasting, minimizing error margins and optimizing resource allocation. This research provides a foundation for refining these methodologies, contributing to improved freight cost management and operational efficiency.por
dc.identifier.doi10.1007/978-3-031-94484-0_13
dc.identifier.isbn9783031944833
dc.identifier.isbn9783031944840
dc.identifier.issn2195-4356
dc.identifier.issn2195-4364
dc.identifier.urihttp://hdl.handle.net/10400.22/30189
dc.language.isoeng
dc.peerreviewedn/a
dc.publisherSpringer
dc.relationUID/00006/2025
dc.relationUIDB/00006/2020
dc.relationUIDB/50022/2020
dc.relation.hasversionhttps://link.springer.com/chapter/10.1007/978-3-031-94484-0_13
dc.relation.ispartofLecture Notes in Mechanical Engineering
dc.relation.ispartofInnovations in Industrial Engineering IV
dc.rights.uriN/A
dc.subjectLogistics
dc.subjectProcess modelling
dc.subjectForecasting
dc.subjectExponential smoothing
dc.subjectDeep learning
dc.subjectBJ-DNN model
dc.subjectPrediction error
dc.titleDevelopment of a decision support system for freight forecastingpor
dc.typeconference paper
dspace.entity.typePublication
oaire.citation.conferenceDate2025
oaire.citation.conferencePlacePraga, República Checa
oaire.citation.endPage164
oaire.citation.startPage152
oaire.citation.titleInnovations in Industrial Engineering IV (icieng 2025)
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameFerreira
person.givenNameFernanda A.
person.identifierR-000-4TV
person.identifier.ciencia-idD116-9419-5778
person.identifier.orcid0000-0002-1335-7821
person.identifier.ridN-4563-2013
person.identifier.scopus-author-id24723992800
relation.isAuthorOfPublicationaaa18584-508e-46b1-9b50-4e174c0e142c
relation.isAuthorOfPublication.latestForDiscoveryaaa18584-508e-46b1-9b50-4e174c0e142c

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
COM_FernandaFerreira_2025.pdf
Size:
12.33 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.03 KB
Format:
Item-specific license agreed upon to submission
Description: