Name: | Description: | Size: | Format: | |
---|---|---|---|---|
5.83 MB | Adobe PDF |
Abstract(s)
Uma correta monitorização de um sistema fotovoltaico é tão importante como o seu correto dimensionamento. A produção de um sistema é influenciada por diversos fatores, alguns possíveis de controlar, outros não. A capacidade de maximizar a produção de uma instalação, em todo e qualquer momento, é fundamental para a sua viabilidade económica.
Sendo que quanto maior a produção, menor será o tempo de retorno do investimento.
A existência de quebras de produção traduz-se em encargos para o proprietário da instalação que vê as suas necessidades energéticas, que deviam ser garantidas pela instalação fotovoltaica, serem compensadas pela rede elétrica de serviço público com um determinado custo associado. A monitorização fotovoltaica, aliada a uma boa ferramenta de análise, ainda corresponde a um tema em bruto. Existem diversos métodos implementados de forma a controlar as instalações em questão, contudo, a imprevisibilidade do clima torna o assunto de difícil abordagem.
A ferramenta apresentada engloba o grupo das análises limiares aplicadas à monitorização fotovoltaica. O trabalho apresentado aborda o tema da análise de dados provenientes da onitorização fotovoltaica, e foi realizado tendo em mente a sua incorporação na cadeia de monitorização implementada nas instalações fotovoltaicas. Apesar de ser apresentado apenas um exemplo da sua implementação, a ferramenta pode ser aplicada a qualquer tipo de instalação de autoconsumo. Esta realiza uma análise aos valores de tensão e corrente das strings individuais de cada inversor do sistema, calcula os valores reais de produção da instalação, realiza uma previsão de produção esperada para a referida instalação, compara os valores reais de produção com os esperados, calcula a variação de produção existente diariamente e, em caso de uma perda de produção percentual acima do valor normal, deteta a avaria no sistema. Em caso de avaria são calculadas as perdas do sistema por período horário com o intuito de calcular o impacto, tanto em termos energéticos como monetários, o que permite informar o proprietário sobre o efeito produzido pela avaria no sistema e também se é apropriado realizar uma manutenção corretiva ou esperar pelo instante da manutenção programada.
A ferramenta permite, em paralelo com as funcionalidades mencionadas anteriormente, uxiliar na descoberta do componente em avaria. Recorrendo ao valor de perdas percentuais instantâneas, é possível comparar este valor com o valor de perdas que uma avaria em determinado componente apresenta. Caso o valor de perdas detetado seja superior ao valor de perdas conhecido para determinado componente, significa que a varia se encontra nesse componente. Apesar de existirem diversas variáveis que influenciam os valores de produção, a ferramenta consegue retomar valores bastante aproximados, mas não é à prova de falha. Recai sobre o utilizador a responsabilidade e espírito crítico de analisar os valores e validar os resultados da ferramenta.
Os resultados obtidos pela ferramenta foram comprovados através da comparação dos alores calculados, com os valores medidos na instalação e visualizados através do sistema de monitorização. Quanto ao desempenho da ferramenta, esta cumpriu os requisitos estabelecidos na etapa inicial, correspondeu a uma melhoria significativa no processo de análise das instalações e no tempo requerido para o efeito. Em termos técnicos, existem melhorias possíveis de implementar, tais como pequenas modificações que permitam melhorar o tempo de computação de resultados e novas funcionalidades que permitam integrar ainda mais informação referente à instalação.
Proper monitoring of a photovoltaic system is as important as its correct planning. The production of a system is influenced by several factors, some possible to control, others not. The ability to maximize the production of a facility, at any given time, is critical to its economic viability, the higher the production, the shorter the payback on the investment. The existence of production failures translates into costs for the owner of the installation, who sees their energy needs, which should be guaranteed by the photovoltaic installation, to be compensated by the public energy grid, with a certain associated cost. Photovoltaic monitoring, combined with a good analysis tool, still corresponds to a raw topic. There are several methods implemented to control the facilities in question, however, due to the unpredictability of the climate, makes the subject difficult to approach. The present work deals with the analysis of data, provided from the photovoltaic monitorization. It was carried out having in mind its implementation in the monitorization chain, applied out to the photovoltaic installations. Although only one example of its implementation is presented, the tool can be applied to any type of self-consumption facility. The tool presented includes the group of threshold analyses, where is performed an analysis of the voltage and current values of the strings of each inverter of the system, calculated the actual production values of the installation, calculated the expected production forecast, compared the actual production values with those expected, calculated the daily production variation and in case of a production loss, above the normal value, a system failure is detected. In case of a breakdown, the losses of the system are calculated, per hourly period, with the aim of calculating the losses in energy and monetary terms. This allows the owner to be informed about the impact of the system malfunction and it’s a better option to perform a corrective maintenance or waiting for a scheduled maintenance. The tool allows, in parallel with the functionalities already explained, to aid in the discovery of the failing component. Recalling the value of daily or instantaneous percentage losses, it is possible to compare this value with the value of losses that a failure off a given component presents, if the detected loss value is higher than the known loss value for a given component, this means that the failure is present at that component. Although there are several variables that influence the production values, the tool is able to deliver approximated values, but it is not fail proof, it is the user's responsibility and critical spirit to analyse the values and validate the results of the tool. The results deliver by the tool, were verified by comparing the calculated values with the values measured in the installation and visualized through the monitoring system implemented, in the installation. Regarding the performance of the tool, it fulfilled the requirements established in the initial stage, corresponding to a significant improvement in the process of analysis of the installations, and in the time required for this purpose. In technical terms, there are improvements possible to implement, small modifications that allow improvements in the computation time of results and new functionalities that allow to integrate even more information regarding the installation.
Proper monitoring of a photovoltaic system is as important as its correct planning. The production of a system is influenced by several factors, some possible to control, others not. The ability to maximize the production of a facility, at any given time, is critical to its economic viability, the higher the production, the shorter the payback on the investment. The existence of production failures translates into costs for the owner of the installation, who sees their energy needs, which should be guaranteed by the photovoltaic installation, to be compensated by the public energy grid, with a certain associated cost. Photovoltaic monitoring, combined with a good analysis tool, still corresponds to a raw topic. There are several methods implemented to control the facilities in question, however, due to the unpredictability of the climate, makes the subject difficult to approach. The present work deals with the analysis of data, provided from the photovoltaic monitorization. It was carried out having in mind its implementation in the monitorization chain, applied out to the photovoltaic installations. Although only one example of its implementation is presented, the tool can be applied to any type of self-consumption facility. The tool presented includes the group of threshold analyses, where is performed an analysis of the voltage and current values of the strings of each inverter of the system, calculated the actual production values of the installation, calculated the expected production forecast, compared the actual production values with those expected, calculated the daily production variation and in case of a production loss, above the normal value, a system failure is detected. In case of a breakdown, the losses of the system are calculated, per hourly period, with the aim of calculating the losses in energy and monetary terms. This allows the owner to be informed about the impact of the system malfunction and it’s a better option to perform a corrective maintenance or waiting for a scheduled maintenance. The tool allows, in parallel with the functionalities already explained, to aid in the discovery of the failing component. Recalling the value of daily or instantaneous percentage losses, it is possible to compare this value with the value of losses that a failure off a given component presents, if the detected loss value is higher than the known loss value for a given component, this means that the failure is present at that component. Although there are several variables that influence the production values, the tool is able to deliver approximated values, but it is not fail proof, it is the user's responsibility and critical spirit to analyse the values and validate the results of the tool. The results deliver by the tool, were verified by comparing the calculated values with the values measured in the installation and visualized through the monitoring system implemented, in the installation. Regarding the performance of the tool, it fulfilled the requirements established in the initial stage, corresponding to a significant improvement in the process of analysis of the installations, and in the time required for this purpose. In technical terms, there are improvements possible to implement, small modifications that allow improvements in the computation time of results and new functionalities that allow to integrate even more information regarding the installation.
Description
Keywords
Produção Fotovoltaica Monitorização Autoconsumo Análise Energética Análise económica Deteção de Avarias Previsão de Produção Eficiência Energética Photovoltaic Production Monitoring Self-consumption Energy Analysis Economic Analysis Fault Detection Production Forecast Energy Efficiency